• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/24372

    Título
    Avoiding order reduction when integrating linear initial boundary value problems with Lawson methods
    Autor
    Alonso Mallo, IsaíasAutoridad UVA Orcid
    Cano Urdiales, BegoñaAutoridad UVA Orcid
    Reguera, Nuria
    Año del Documento
    2017
    Editorial
    Oxford Academic
    Documento Fuente
    IMA J. Numer. Anal. d.o.i: 10.1093/imanum/drw052
    Résumé
    Exponential Lawson methods are well known to have a severe order reduction when integrating stiff problems. In a previous article, the precise order observed with Lawson methods when integrating linear problems is justified in terms of different conditions of annihilation on the boundary. In fact, the analysis of convergence with all exponential methods when applied to parabolic problems has always been performed under assumptions of vanishing boundary conditions for the solution. In this article, we offer a generalization of Lawson methods to approximate problems with nonvanishing and even time-dependent boundary values. This technique is cheap and allows to avoid completely order reduction independently of having vanishing or nonvanishing boundary conditions.
    Revisión por pares
    SI
    DOI
    10.1093/imanum/drw052
    Patrocinador
    Este trabajo forma parte del proyecto de investigación: MTM 2015-66837-P
    Version del Editor
    https://academic.oup.com/imajna
    Propietario de los Derechos
    Institute of Mathematics and its Applications
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/24372
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [145]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    orderredlawb-rev_ima-07b.pdf
    Tamaño:
    176.6Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10