Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://uvadoc.uva.es/handle/10324/24372
Título: Avoiding order reduction when integrating linear initial boundary value problems with Lawson methods
Autor: Alonso-Mallo, Isaías
Cano, Begoña
Reguera, Nuria
Año del Documento: 2017
Editorial: Oxford Academic
Documento Fuente: IMA J. Numer. Anal. d.o.i: 10.1093/imanum/drw052
Resumen: Exponential Lawson methods are well known to have a severe order reduction when integrating stiff problems. In a previous article, the precise order observed with Lawson methods when integrating linear problems is justified in terms of different conditions of annihilation on the boundary. In fact, the analysis of convergence with all exponential methods when applied to parabolic problems has always been performed under assumptions of vanishing boundary conditions for the solution. In this article, we offer a generalization of Lawson methods to approximate problems with nonvanishing and even time-dependent boundary values. This technique is cheap and allows to avoid completely order reduction independently of having vanishing or nonvanishing boundary conditions.
Revisión por Pares: SI
DOI: 10.1093/imanum/drw052
Patrocinador: Este trabajo forma parte del proyecto de investigación: MTM 2015-66837-P
Version del Editor: https://academic.oup.com/imajna
Propietario de los Derechos: Institute of Mathematics and its Applications
Idioma: spa
URI: http://uvadoc.uva.es/handle/10324/24372
Derechos: info:eu-repo/semantics/restrictedAccess
Aparece en las colecciones:DEP51 - Artículos de revista

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
orderredlawb-rev_ima-07b.pdf176,68 kBAdobe PDFThumbnail
Visualizar/Abrir


Los ítems de UVaDOC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

Comentarios
Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5