• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/31357

    Título
    Automated detection of childhood sleep apnea using discrete wavelet transform of nocturnal oximetry and anthropometric variables
    Autor
    Crespo Senado, Andrea
    Vaquerizo Villar, FernandoAutoridad UVA Orcid
    Álvarez González, DanielAutoridad UVA Orcid
    Gutierrez Tobal, Gonzalo CésarAutoridad UVA Orcid
    Barroso García, VerónicaAutoridad UVA Orcid
    Cerezo Hernández, Ana
    López Muñiz, Graciela
    Kheirandish Gozal, Leila
    Gozal, David
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Campo Matias, Félix delAutoridad UVA Orcid
    Congreso
    European Respiratory Society International Congress 2017
    Año del Documento
    2017
    Descripción
    Producción Científica
    Resumen
    Background. Standard pediatric in-lab polysomnography (PSG) is relatively unavailable and particularly intrusive for children. In low resource settings, nocturnal oximetry has been proposed as a feasible and potentially reliable screening tool for childhood obstructive sleep apneahypopnea syndrome (OSAHS), although additional confirmatory evidence is needed. Aims and objectives. Discrete wavelet transform (DWT) could be a useful tool to characterize fluctuations in nocturnal oximetry. We aimed at designing and assessing a model for detecting childhood OSAHS using anthropometric and DWT features. Methods. A total of 298 children with clinical suspicion of OSAHS underwent in-lab PSG. A cut-off of 5 events/h was stipulated as confirming OSAHS. DWT was used to inspect the spectral content of oximetry in frequency bands linked with apnea pseudo-periodicity: detail levels D9 (0.024-0.049 Hz) and D10 (0.012-0.024 Hz). Mean, variance, minimum, and maximum of DWT coefficients were computed. Stepwise logistic regression was employed to build an OSAHS model from DWT, age, gender, and body mass index (BMI) z score. Training (60%) and test (40%) sets were randomly allocated. Results. Age, gender, D9 mean, and D10 variance were automatically selected. Our model reached 79.1% sensitivity, 81.7% specificity, 4.33 LR+, 0.26 LR-, and 80.5% accuracy in the test set. Conclusions. Features from DWT coefficients and anthropometric variables such as age provide complementary information that enables detection of moderate-to-severe childhood OSAHS in a high pre-test probability cohort.
    Patrocinador
    SEPAR (153/2015), Junta Castilla y LeÓn (VA037U16), MINECO (IJCI-2014-22664).
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/31357
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • GIB - Comunicaciones a congresos, conferencias, etc. [36]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Abstract ERS 2017.pdf
    Tamaño:
    136.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10