• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/31750

    Título
    Bounding the number of points on a curve using a generalization of Weierstrass semigroups
    Autor
    Beelen, Peter
    Ruano Benito, DiegoAutoridad UVA Orcid
    Año del Documento
    2013
    Descripción
    Producción Científica
    Documento Fuente
    Designs, Codes and Cryptography. Volume 66, Issue 1-3, pages 221-230 (2013)
    Abstract
    In this article we use techniques from coding theory to derive upper bounds for the number of rational places of the function field of an algebraic curve defined over a finite field. The used techniques yield upper bounds if the (generalized) Weierstrass semigroup for an n-tuple of places is known, even if the exact defining equation of the curve is not known. As shown in examples, this sometimes enables one to get an upper bound for the number of rational places for families of function fields. Our results extend results in [J. Pure Appl. Algebra, 213(6):1152-1156, 2009] .
    Revisión por pares
    SI
    DOI
    10.1007/s10623-012-9685-3
    Patrocinador
    This work was supported in part by the Danish FNU grant 272-07-0266, the Danish National Research Foundation and the National Science Foundation of China (Grant No.11061130539) for the Danish-Chinese Center for Applications of Algebraic Geometry in Coding Theory and Cryptography and by the Spanish grant MTM2007-64704
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/31750
    Derechos
    openAccess
    Collections
    • IMUVA - Artículos de Revista [104]
    • DEP96 - Artículos de revista [95]
    Show full item record
    Files in this item
    Nombre:
    DCC2012eprint.pdf
    Tamaño:
    300.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10