Mostrar el registro sencillo del ítem
dc.contributor.author | Caraballo Garrido, Tomás | |
dc.contributor.author | Langa Rosado, José Antonio | |
dc.contributor.author | Obaya, Rafael | |
dc.contributor.author | Sanz Gil, Ana María | |
dc.date.accessioned | 2018-10-08T13:05:04Z | |
dc.date.available | 2018-10-08T13:05:04Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | J. Differential Equations, Noviembre 2018, vol. 265, n. 9, 3914-3951 | es |
dc.identifier.issn | 0022-0396 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/32030 | |
dc.description.abstract | In this paper we obtain a detailed description of the global and cocycle attractors for the skew-product semiflows induced by the mild solutions of a family of scalar linear-dissipative parabolic problems over a minimal and uniquely ergodic flow. We consider the case of null upper Lyapunov exponent for the linear part of the problem. Then, two different types of attractors can appear, depending on whether the linear equations have a bounded or an unbounded associated real cocycle. In the first case (e.g.in periodic equations), the structure of the attractor is simple, whereas in the second case (which occurs in aperiodic equations), the attractor is a pinched set with a complicated structure. We describe situations when the attractor is chaotic in measure in the sense of Li–Yorke. Besides, we obtain a non-autonomous discontinuous pitchfork bifurcation scenario for concave equations, applicable for instance to a linear-dissipative version of the Chafee–Infante equation. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elservier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.subject.classification | Non-autonomous dynamical systems | es |
dc.subject.classification | Global and cocycle attractors | es |
dc.subject.classification | Linear-dissipative PDEs | es |
dc.subject.classification | Li–Yorke chaos in measure | es |
dc.subject.classification | Non-autonomous bifurcation theory | es |
dc.title | Global and cocycle attractors for non-autonomous reaction-diffusion equations. The case of null upper Lyapunov exponent | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1016/j.jde.2018.05.023 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0022039618303048 | es |
dc.identifier.publicationfirstpage | 3914 | es |
dc.identifier.publicationissue | 265 | es |
dc.identifier.publicationlastpage | 3951 | es |
dc.peerreviewed | SI | es |
dc.description.project | MINECO / FEDER grant MTM2015-66330-P | es |
dc.description.project | MINECO / FEDER grant MTM2015-63723-P | es |
dc.description.project | Junta de Andalucía Proyecto de Excelencia FQM-1492 | es |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/643073 |