Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/32030
Título
Global and cocycle attractors for non-autonomous reaction-diffusion equations. The case of null upper Lyapunov exponent
Año del Documento
2018
Editorial
Elservier
Documento Fuente
J. Differential Equations, Noviembre 2018, vol. 265, n. 9, 3914-3951
Resumen
In this paper we obtain a detailed description of the global and cocycle attractors for the skew-product semiflows induced by the mild solutions of a family of scalar linear-dissipative parabolic problems over a minimal and uniquely ergodic flow. We consider the case of null upper Lyapunov exponent for the linear part of the problem. Then, two different types of attractors can appear, depending on whether the linear equations have a bounded or an unbounded associated real cocycle. In the first case (e.g.in periodic equations), the structure of the attractor is simple, whereas in the second case (which occurs in aperiodic equations), the attractor is a pinched set with a complicated structure. We describe situations when the attractor is chaotic in measure in the sense of Li–Yorke. Besides, we obtain a non-autonomous discontinuous pitchfork bifurcation scenario for concave equations, applicable for instance to a linear-dissipative version of the Chafee–Infante equation.
Palabras Clave
Non-autonomous dynamical systems
Global and cocycle attractors
Linear-dissipative PDEs
Li–Yorke chaos in measure
Non-autonomous bifurcation theory
ISSN
0022-0396
Revisión por pares
SI
Patrocinador
MINECO / FEDER grant MTM2015-66330-P
MINECO / FEDER grant MTM2015-63723-P
Junta de Andalucía Proyecto de Excelencia FQM-1492
MINECO / FEDER grant MTM2015-63723-P
Junta de Andalucía Proyecto de Excelencia FQM-1492
Patrocinador
info:eu-repo/grantAgreement/EC/H2020/643073
Version del Editor
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem