• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33577

    Título
    Transition from the Wave Equation to Either the Heat or the Transport Equations through Fractional Differential Expressions
    Autor
    Olivar Romero, Fernando
    Rosas Ortiz, Óscar
    Año del Documento
    2018
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Symmetry 2018, 10(10), 524;
    Abstract
    We present a model that intermediates among the wave, heat, and transport equations. The approach considers the propagation of initial disturbances in a one-dimensional medium that can vibrate. The medium is nonlinear in such a form that nonlocal differential expressions are required to describe the time evolution of solutions. Nonlocality was modeled with a space-time fractional differential equation of order 1≤α≤2 in time, and order 1≤β≤2 in space. We adopted the notion of Caputo for the time derivative and the Riesz pseudo-differential operator for the space derivative. The corresponding Cauchy problem was solved for zero initial velocity and initial disturbance, represented by either the Dirac delta or the Gaussian distributions. Well-known results for the conventional partial differential equations of wave propagation, diffusion, and (modified) transport processes were recovered as particular cases. In addition, regular solutions were found for the partial differential equation that arises from α=2 and β=1 . Unlike the above conventional cases, the latter equation permits the presence of nodes in its solutions
    Palabras Clave
    Ecuaciones diferenciales
    Differential equations
    Revisión por pares
    SI
    DOI
    10.3390/sym10100524
    Version del Editor
    https://www.mdpi.com/2073-8994/10/10/524
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/33577
    Derechos
    openAccess
    Collections
    • FM - Artículos de revista [134]
    Show full item record
    Files in this item
    Nombre:
    symmetry-10-00524.pdf
    Tamaño:
    1.170Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10