Mostrar el registro sencillo del ítem
dc.contributor.author | Ballesteros Castañeda, Ángel | |
dc.contributor.author | Campoamor Stursberg, Rutwig | |
dc.contributor.author | Fernandez Saiz, Eduardo | |
dc.contributor.author | Herranz, F.J. | |
dc.contributor.author | Lucas Veguillas, Javier de | |
dc.date.accessioned | 2018-12-21T17:05:02Z | |
dc.date.available | 2018-12-21T17:05:02Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Journal of Physics A: Mathematical and Theoretical, vol. 51 (2018) 065202 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/33630 | |
dc.description.abstract | Hopf algebra deformations are merged with a class of Lie systems of Hamiltonian type, the so-called Lie-Hamilton systems, to devise a novel formalism: the Poisson-Hopf algebra deformations of Lie-Hamilton systems. This approach applies to any Hopf algebra deformation of any Lie-Hamilton system. Remarkably, a Hopf algebra deformation transforms a Lie-Hamilton system, whose dynamic is governed by a finite-dimensional Lie algebra of functions, into a non-Lie-Hamilton system associated with a Poisson-Hopf algebra of functions that allows for the explicit description of its t-independent constants of the motion from deformed Casimir functions. We illustrate our approach by considering the Poisson-Hopf algebra analogue of the non-standard quantum deformation of sl(2) and its applications to deform well-known Lie-Hamilton systems describing oscillator systems, Milne-Pinney equations, and several types of Riccati equations. In particular, we obtain a new position-dependent mass oscillator system with a time-dependent frequency. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.title | Poisson-Hopf algebra deformations of Lie-Hamilton systems | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.publicationfirstpage | 065202 | es |
dc.peerreviewed | SI | es |