Mostrar el registro sencillo del ítem

dc.contributor.authorBallesteros Castañeda, Ángel
dc.contributor.authorCampoamor Stursberg, Rutwig
dc.contributor.authorFernandez Saiz, Eduardo
dc.contributor.authorHerranz, F.J.
dc.contributor.authorLucas Veguillas, Javier de
dc.date.accessioned2018-12-21T17:05:02Z
dc.date.available2018-12-21T17:05:02Z
dc.date.issued2018
dc.identifier.citationJournal of Physics A: Mathematical and Theoretical, vol. 51 (2018) 065202es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/33630
dc.description.abstractHopf algebra deformations are merged with a class of Lie systems of Hamiltonian type, the so-called Lie-Hamilton systems, to devise a novel formalism: the Poisson-Hopf algebra deformations of Lie-Hamilton systems. This approach applies to any Hopf algebra deformation of any Lie-Hamilton system. Remarkably, a Hopf algebra deformation transforms a Lie-Hamilton system, whose dynamic is governed by a finite-dimensional Lie algebra of functions, into a non-Lie-Hamilton system associated with a Poisson-Hopf algebra of functions that allows for the explicit description of its t-independent constants of the motion from deformed Casimir functions. We illustrate our approach by considering the Poisson-Hopf algebra analogue of the non-standard quantum deformation of sl(2) and its applications to deform well-known Lie-Hamilton systems describing oscillator systems, Milne-Pinney equations, and several types of Riccati equations. In particular, we obtain a new position-dependent mass oscillator system with a time-dependent frequency.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titlePoisson-Hopf algebra deformations of Lie-Hamilton systemses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.publicationfirstpage065202es
dc.peerreviewedSIes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem