Mostrar el registro sencillo del ítem

dc.contributor.authorBallesteros Castañeda, Ángel
dc.contributor.authorMarrero, Juan C.
dc.contributor.authorRavanpak, Zohreh
dc.date.accessioned2018-12-27T16:26:12Z
dc.date.available2018-12-27T16:26:12Z
dc.date.issued2017
dc.identifier.citationJournal of Physics A: Mathematical and Theoretical, vol. 50 (2017) 145204 (25pp)es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/33635
dc.descriptionProducción Científicaes
dc.description.abstractGiven a Lie-Poisson completely integrable bi-Hamiltonian system on R^n, we present a method which allows us to construct, under certain conditions, a completely integrable bi-Hamiltonian deformation of the initial Lie-Poisson system on a non-abelian Poisson-Lie group G_eta of dimension n, where eta \in R is the deformation parameter. Moreover, we show that from the two multiplicative (Poisson-Lie) Hamiltonian structures on G_eta that underly the dynamics of the deformed system and by making use of the group law on G_eta, one may obtain two completely integrable Hamiltonian systems on G_eta x G_eta. By construction, both systems admit reduction, via the multiplication in G_eta, to the deformed bi-Hamiltonian system in G_eta. The previous approach is applied to two relevant Lie-Poisson completely integrable bi-Hamiltonian systems: the Lorenz and Euler top systems.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titlePoisson-Lie groups, bi-Hamiltonian systems and integrable deformationses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.publicationfirstpage145204es
dc.peerreviewedSIes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem