Mostrar el registro sencillo del ítem
dc.contributor.author | Ballesteros Castañeda, Ángel | |
dc.contributor.author | Marrero, Juan C. | |
dc.contributor.author | Ravanpak, Zohreh | |
dc.date.accessioned | 2018-12-27T16:26:12Z | |
dc.date.available | 2018-12-27T16:26:12Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Journal of Physics A: Mathematical and Theoretical, vol. 50 (2017) 145204 (25pp) | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/33635 | |
dc.description | Producción Científica | es |
dc.description.abstract | Given a Lie-Poisson completely integrable bi-Hamiltonian system on R^n, we present a method which allows us to construct, under certain conditions, a completely integrable bi-Hamiltonian deformation of the initial Lie-Poisson system on a non-abelian Poisson-Lie group G_eta of dimension n, where eta \in R is the deformation parameter. Moreover, we show that from the two multiplicative (Poisson-Lie) Hamiltonian structures on G_eta that underly the dynamics of the deformed system and by making use of the group law on G_eta, one may obtain two completely integrable Hamiltonian systems on G_eta x G_eta. By construction, both systems admit reduction, via the multiplication in G_eta, to the deformed bi-Hamiltonian system in G_eta. The previous approach is applied to two relevant Lie-Poisson completely integrable bi-Hamiltonian systems: the Lorenz and Euler top systems. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.title | Poisson-Lie groups, bi-Hamiltonian systems and integrable deformations | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.publicationfirstpage | 145204 | es |
dc.peerreviewed | SI | es |