Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33637
Título
Lie–Hamilton systems on curved spaces: A geometrical approach
Año del Documento
2017
Descripción
Producción Científica
Documento Fuente
Journal of Physics A: Mathematical and Theoretical, vol. 50 (2017) 495201
Resumen
A Lie–Hamilton system is a nonautonomous system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional Lie algebra, a Vessiot–Guldberg Lie algebra, of Hamiltonian vector fields relative to a Poisson structure. Its general solution can be written as an autonomous function, the superposition rule, of a generic finite family of particular solutions and a set of constants. We pioneer the study of Lie–Hamilton systems on Riemannian spaces (sphere, Euclidean and hyperbolic plane), pseudo-Riemannian spaces (anti-de Sitter, de Sitter, and Minkowski spacetimes) as well as on semi-Riemannian spaces (Newtonian spacetimes). Their corresponding constants of motion and superposition rules are obtained explicitly in a geometric way. This work extends the (graded) contraction of Lie algebras to a contraction procedure for Lie algebras of vector fields, Hamiltonian functions, and related symplectic structures, invariants, and superposition rules.
Revisión por pares
SI
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem