Mostrar el registro sencillo del ítem
dc.contributor.author | Herranz, F.J. | |
dc.contributor.author | Lucas Veguillas, Javier de | |
dc.contributor.author | Tobolski, M. | |
dc.date.accessioned | 2018-12-27T16:33:08Z | |
dc.date.available | 2018-12-27T16:33:08Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Journal of Physics A: Mathematical and Theoretical, vol. 50 (2017) 495201 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/33637 | |
dc.description | Producción Científica | es |
dc.description.abstract | A Lie–Hamilton system is a nonautonomous system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional Lie algebra, a Vessiot–Guldberg Lie algebra, of Hamiltonian vector fields relative to a Poisson structure. Its general solution can be written as an autonomous function, the superposition rule, of a generic finite family of particular solutions and a set of constants. We pioneer the study of Lie–Hamilton systems on Riemannian spaces (sphere, Euclidean and hyperbolic plane), pseudo-Riemannian spaces (anti-de Sitter, de Sitter, and Minkowski spacetimes) as well as on semi-Riemannian spaces (Newtonian spacetimes). Their corresponding constants of motion and superposition rules are obtained explicitly in a geometric way. This work extends the (graded) contraction of Lie algebras to a contraction procedure for Lie algebras of vector fields, Hamiltonian functions, and related symplectic structures, invariants, and superposition rules. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.title | Lie–Hamilton systems on curved spaces: A geometrical approach | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.publicationfirstpage | 495201 | es |
dc.peerreviewed | SI | es |