Mostrar el registro sencillo del ítem

dc.contributor.authorHerranz, F.J.
dc.contributor.authorLucas Veguillas, Javier de
dc.contributor.authorTobolski, M.
dc.date.accessioned2018-12-27T16:33:08Z
dc.date.available2018-12-27T16:33:08Z
dc.date.issued2017
dc.identifier.citationJournal of Physics A: Mathematical and Theoretical, vol. 50 (2017) 495201es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/33637
dc.descriptionProducción Científicaes
dc.description.abstractA Lie–Hamilton system is a nonautonomous system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional Lie algebra, a Vessiot–Guldberg Lie algebra, of Hamiltonian vector fields relative to a Poisson structure. Its general solution can be written as an autonomous function, the superposition rule, of a generic finite family of particular solutions and a set of constants. We pioneer the study of Lie–Hamilton systems on Riemannian spaces (sphere, Euclidean and hyperbolic plane), pseudo-Riemannian spaces (anti-de Sitter, de Sitter, and Minkowski spacetimes) as well as on semi-Riemannian spaces (Newtonian spacetimes). Their corresponding constants of motion and superposition rules are obtained explicitly in a geometric way. This work extends the (graded) contraction of Lie algebras to a contraction procedure for Lie algebras of vector fields, Hamiltonian functions, and related symplectic structures, invariants, and superposition rules.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleLie–Hamilton systems on curved spaces: A geometrical approaches
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.publicationfirstpage495201es
dc.peerreviewedSIes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem