Mostrar el registro sencillo del ítem
dc.contributor.author | Marqués Cuesta, Luis Alberto | |
dc.contributor.author | Aboy Cebrián, María | |
dc.contributor.author | Ruiz Prieto, Manuel | |
dc.contributor.author | Santos Tejido, Iván | |
dc.contributor.author | López Martín, Pedro | |
dc.contributor.author | Pelaz Montes, María Lourdes | |
dc.date.accessioned | 2019-01-09T08:44:09Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Acta Materialia, 2019, Volume 166, Pages 192-201 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/33729 | |
dc.description | Producción Científica | es |
dc.description.abstract | By using classical molecular dynamics simulations and a novel technique to identify defects based on the calculation of atomic strain, we have elucidated the detailed mechanisms leading to the anomalous generation and growth of {001} loops found after ultra-fast laser annealing of ion-implanted Si. We show that the building block of the {001} loops is the very stable Arai tetra-interstitial [N. Arai, S. Takeda, M. Kohyama, Phys. Rev. Lett. 78, 4265 (1997)], but their growth is kinetically prevented within conventional Ostwald ripening mechanisms under standard processing conditions. However, our simulations predict that at temperatures close to the Si melting point, Arai tetra-interstitials directly nucleate at the boundaries of fast diffusing self-interstitial agglomerates, which merge by a coalescence mechanism reaching large sizes in the nanosecond timescale. We demonstrate that the crystallization of such agglomerates into {001} loops and their subsequent growth is mediated by the tensile and compressive strain fields that develop concurrently around the loops. We also show that further annealing produces the unfaulting of {001} loops into perfect dislocations. Besides, from the simulations we have fully characterized the {001} loops, determining their atomic structure, interstitial density and formation energy. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.subject.classification | Silicio | es |
dc.subject.classification | Dinámica molecular | es |
dc.subject.classification | Tratamiento láser | es |
dc.subject.classification | Silicon | es |
dc.subject.classification | Molecular dynamics | es |
dc.subject.classification | Laser treatment | es |
dc.title | {001} loops in silicon unraveled | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2018 Elsevier | es |
dc.identifier.doi | https://doi.org/10.1016/j.actamat.2018.12.052 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S1359645418310036 | es |
dc.peerreviewed | SI | es |
dc.description.embargo | 2020-12-30 | es |
dc.description.lift | 2020-12-30 | |
dc.description.project | Ministerio de Ciencia e Innovación (Project TEC2014-60694-P) | es |
dc.description.project | Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA119G18) | es |