Mostrar el registro sencillo del ítem

dc.contributor.authorDemir Kizilirmk, D.
dc.contributor.authorKuru, Sengul
dc.contributor.authorNegro Vadillo, Francisco Javier 
dc.date.accessioned2020-01-11T19:00:59Z
dc.date.available2020-01-11T19:00:59Z
dc.date.issued2020
dc.identifier.citationPhysica E: Low-dimensional Systems and Nanostructures 118 (2020) 113926.es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/40088
dc.description.abstractIn this paper the Dirac-Weyl equation on a hyperbolic surface of graphene under magnetic fields is considered. In order to solve this equation analytically for some cases, we will deal with vector potentials symmetric under rotations around the z axis. Instead of using tetrads we will get this equation from a more intuitive point of view by restriction from the Dirac-Weyl equation of an ambient space. The eigenvalues and corresponding eigenfunctions for some magnetic fields are found by means of the factorization method. The existence of a zero energy ground level and its degeneracy is also analysed in relation to the Aharonov-Casher theorem valid for at graphene.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleDirac-Weyl equation on a hyperbolic graphene surface under perpendicular magnetic fieldses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.publicationfirstpage113926es
dc.peerreviewedSIes
dc.type.hasVersioninfo:eu-repo/semantics/draftes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem