Mostrar el registro sencillo del ítem
dc.contributor.author | Demir Kizilirmk, D. | |
dc.contributor.author | Kuru, Sengul | |
dc.contributor.author | Negro Vadillo, Francisco Javier | |
dc.date.accessioned | 2020-01-11T19:00:59Z | |
dc.date.available | 2020-01-11T19:00:59Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Physica E: Low-dimensional Systems and Nanostructures 118 (2020) 113926. | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/40088 | |
dc.description.abstract | In this paper the Dirac-Weyl equation on a hyperbolic surface of graphene under magnetic fields is considered. In order to solve this equation analytically for some cases, we will deal with vector potentials symmetric under rotations around the z axis. Instead of using tetrads we will get this equation from a more intuitive point of view by restriction from the Dirac-Weyl equation of an ambient space. The eigenvalues and corresponding eigenfunctions for some magnetic fields are found by means of the factorization method. The existence of a zero energy ground level and its degeneracy is also analysed in relation to the Aharonov-Casher theorem valid for at graphene. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.title | Dirac-Weyl equation on a hyperbolic graphene surface under perpendicular magnetic fields | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.publicationfirstpage | 113926 | es |
dc.peerreviewed | SI | es |
dc.type.hasVersion | info:eu-repo/semantics/draft | es |