• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Economía Aplicada
    • DEP20 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Economía Aplicada
    • DEP20 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40552

    Título
    Outliers and misleading leverage effect in asymmetric GARCH-type models
    Autor
    Carnero, María Ángeles
    Pérez Espartero, AnaAutoridad UVA Orcid
    Año del Documento
    2019
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Studies in Nonlinear Dynamics & Econometrics, 0.0, 2012, vol. 25, no. 1, pp. 20180073.
    Abstract
    This paper illustrates how outliers can affect both the estimation and testing of leverage effect by focusing on the TGARCH model. Three estimation methods are compared through Monte Carlo experiments: Gaussian Quasi-Maximum Likelihood, Quasi-Maximum Likelihood based on the Student-t likelihood and Least Absolute Deviation method. The empirical behavior of the t-ratio and the Likelihood Ratio tests for the significance of the leverage parameter is also analyzed. Our results put forward the unreliability of Gaussian Quasi-Maximum Likelihood methods in the presence of outliers. In particular, we show that one isolated outlier could hide true leverage effect whereas two consecutive outliers bias the estimated leverage coefficient in a direction that crucially depends on the sign of the first outlier and could lead to wrongly reject the null of no leverage effect or to estimate asymmetries of the wrong sign. By contrast, we highlight the good performance of the robust estimators in the presence of one isolated outlier. However, when there are patches of outliers, our findings suggest that the sizes and powers of the tests as well as the estimated parameters based on robust methods may still be distorted in some cases. We illustrate these results with two series of daily returns.
    Palabras Clave
    GARCH-type models
    Modelos tipo GARCH
    ISSN
    1558-3708
    Revisión por pares
    SI
    DOI
    10.1515/snde-2018-0073
    Patrocinador
    Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA148G18)
    Ministerio de Economía, Industria y Competitividad (Projects ECO2017-87069-P and ECO2016-77900-P)
    Version del Editor
    https://www.degruyter.com/document/doi/10.1515/snde-2018-0073/html
    Propietario de los Derechos
    © 2021 Walter de Gruyter GmbH
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/40552
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP20 - Artículos de revista [181]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Outliers-Garch.pdf
    Tamaño:
    615.9Kb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10