Mostrar el registro sencillo del ítem

dc.contributor.authorCarnero, María Ángeles
dc.contributor.authorPérez Espartero, Ana 
dc.date.accessioned2020-03-02T10:01:02Z
dc.date.available2020-03-02T10:01:02Z
dc.date.issued2019
dc.identifier.citationStudies in Nonlinear Dynamics & Econometrics, 0.0, 2012, vol. 25, no. 1, pp. 20180073.es
dc.identifier.issn1558-3708es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/40552
dc.descriptionProducción Científicaes
dc.description.abstractThis paper illustrates how outliers can affect both the estimation and testing of leverage effect by focusing on the TGARCH model. Three estimation methods are compared through Monte Carlo experiments: Gaussian Quasi-Maximum Likelihood, Quasi-Maximum Likelihood based on the Student-t likelihood and Least Absolute Deviation method. The empirical behavior of the t-ratio and the Likelihood Ratio tests for the significance of the leverage parameter is also analyzed. Our results put forward the unreliability of Gaussian Quasi-Maximum Likelihood methods in the presence of outliers. In particular, we show that one isolated outlier could hide true leverage effect whereas two consecutive outliers bias the estimated leverage coefficient in a direction that crucially depends on the sign of the first outlier and could lead to wrongly reject the null of no leverage effect or to estimate asymmetries of the wrong sign. By contrast, we highlight the good performance of the robust estimators in the presence of one isolated outlier. However, when there are patches of outliers, our findings suggest that the sizes and powers of the tests as well as the estimated parameters based on robust methods may still be distorted in some cases. We illustrate these results with two series of daily returns.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationGARCH-type modelses
dc.subject.classificationModelos tipo GARCHes
dc.titleOutliers and misleading leverage effect in asymmetric GARCH-type modelses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 Walter de Gruyter GmbHes
dc.identifier.doi10.1515/snde-2018-0073es
dc.relation.publisherversionhttps://www.degruyter.com/document/doi/10.1515/snde-2018-0073/htmles
dc.identifier.publicationissue0es
dc.identifier.publicationtitleStudies in Nonlinear Dynamics & Econometricses
dc.identifier.publicationvolume0es
dc.peerreviewedSIes
dc.description.projectJunta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA148G18)es
dc.description.projectMinisterio de Economía, Industria y Competitividad (Projects ECO2017-87069-P and ECO2016-77900-P)es
dc.identifier.essn1558-3708es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem