Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40883
Título
Cayley-Klein Poisson Homogeneous Spaces
Autor
Año del Documento
2019
Descripción
Producción Científica
Documento Fuente
Geometry, Integrability and Quantization, 2019, vol. XX. p. 161-183
Abstract
The nine two-dimensional Cayley–Klein geometries are firstly reviewed by following a graded
contraction approach. Each geometry is considered as a set of three symmetrical homogeneous spaces (of points and two kinds of lines), in such a manner that the graded contraction
parameters determine their curvature and signature. Secondly, new Poisson homogeneous
spaces are constructed by making use of certain Poisson–Lie structures on the corresponding motion groups. Therefore, the quantization of these spaces provides noncommutative
analogues of the Cayley–Klein geometries. The kinematical interpretation for the semiRiemannian and pseudo-Riemannian Cayley–Klein geometries is emphasized, since they are
just Newtonian and Lorentzian spacetimes of constant curvature.
Palabras Clave
Quantum groups
Grupos cuánticos
Riemannian geometry
Geometría de Riemann
ISSN
1314-3247
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación y Universidades (grant MTM2016-79639-P)
European Cooperation in Science and Technology (COST Action MP1405 QSPACE)
European Cooperation in Science and Technology (COST Action MP1405 QSPACE)
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Collections
Files in this item