• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Grupos de Investigación
    • Entornos de Computación Avanzada y Sistemas de Interacción Multimodal (ECA-SIMM)
    • ECA-SIMM - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Grupos de Investigación
    • Entornos de Computación Avanzada y Sistemas de Interacción Multimodal (ECA-SIMM)
    • ECA-SIMM - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/41013

    Título
    Automatic assessment of prosodic quality in Down syndrome: Analysis of the impact of speaker heterogeneity
    Autor
    Corrales Astorgano, MarioAutoridad UVA Orcid
    Martínez Castilla, Pastora
    Escudero Mancebo, DavidAutoridad UVA Orcid
    Aguilar Cuevas, Lourdes
    González Ferreras, CésarAutoridad UVA Orcid
    Cardeñoso Payo, ValentínAutoridad UVA Orcid
    Año del Documento
    2019
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Applied Sciences, 2019, vol. 9, n. 7. 17 p.
    Zusammenfassung
    Prosody is a fundamental speech element responsible for communicative functions such as intonation, accent and phrasing, and prosodic impairments of individuals with intellectual disabilities reduce their communication skills. Yet, technological resources have paid little attention to prosody. This study aims to develop an automatic classifier to predict the prosodic quality of utterances produced by individuals with Down syndrome, and to analyse how inter-individual heterogeneity affects assessment results. A therapist and an expert in prosody judged the prosodic appropriateness of a corpus of Down syndrome’ utterances collected through a video game. The judgments of the expert were used to train an automatic classifier that predicts prosodic quality by using a set of fundamental frequency, duration and intensity features. The classifier accuracy was 79.3% and its true positive rate 89.9%. We analyzed how informative each of the features was for the assessment and studied relationships between participants’ developmental level and results: interspeaker variability conditioned the relative weight of prosodic features for automatic classification and participants’ developmental level was related to the prosodic quality of their productions. Therefore, since speaker variability is an intrinsic feature of individuals with Down syndrome, it should be considered to attain an effective automatic prosodic assessment system.
    Palabras Clave
    Prosody
    Prosodia
    Down syndrome
    Síndrome de Down
    Educational video games
    Videojuegos educativos
    ISSN
    2076-3417
    Revisión por pares
    SI
    DOI
    10.3390/app9071440
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (project TIN2017-88858-C2-1-R)
    Junta de Castilla y León (project VA050G18)
    Version del Editor
    https://www.mdpi.com/2076-3417/9/7/1440
    Propietario de los Derechos
    © 2019 MDPI
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/41013
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • ECA-SIMM - Artículos de revista [8]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    Automatic-assessment-of-prosodic-quality.pdf
    Tamaño:
    389.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10