• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Grupos de Investigación
    • Untitled
    • GCME - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Grupos de Investigación
    • Untitled
    • GCME - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/44670

    Título
    Multilevel HfO2-based RRAM devices for low-power neuromorphic networks
    Autor
    Milo, V.
    Zambelli, Cristian
    Olivo, P.
    Pérez, Eduardo
    Mahadevaiah, M. K.
    González Ossorio, ÓscarAutoridad UVA
    Wenger, Christian
    Ielmini, Daniele
    Año del Documento
    2019
    Editorial
    AIP Publishing
    Descripción
    Producción Científica
    Documento Fuente
    APL Materials, 2019, vol. 7, n. 8. 10 p.
    Resumo
    Training and recognition with neural networks generally require high throughput, high energy efficiency, and scalable circuits to enable artificial intelligence tasks to be operated at the edge, i.e., in battery-powered portable devices and other limited-energy environments. In this scenario, scalable resistive memories have been proposed as artificial synapses thanks to their scalability, reconfigurability, and high-energy efficiency, and thanks to the ability to perform analog computation by physical laws in hardware. In this work, we study the material, device, and architecture aspects of resistive switching memory (RRAM) devices for implementing a 2-layer neural network for pattern recognition. First, various RRAM processes are screened in view of the device window, analog storage, and reliability. Then, synaptic weights are stored with 5-level precision in a 4 kbit array of RRAM devices to classify the Modified National Institute of Standards and Technology (MNIST) dataset. Finally, classification performance of a 2-layer neural network is tested before and after an annealing experiment by using experimental values of conductance stored into the array, and a simulation-based analysis of inference accuracy for arrays of increasing size is presented. Our work supports material-based development of RRAM synapses for novel neural networks with high accuracy and low-power consumption.
    Palabras Clave
    Metal oxides
    Óxidos metálicos
    Artificial neural networks
    Redes neuronales artificiales
    Analog computation
    Computación analógica
    ISSN
    2166-532X
    Revisión por pares
    SI
    DOI
    10.1063/1.5108650
    Patrocinador
    European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 648635)
    German Research Foundation (grant FOR2093)
    Patrocinador
    info:eu-repo/grantAgreement/EC/H2020/648635
    Version del Editor
    https://aip.scitation.org/doi/10.1063/1.5108650
    Propietario de los Derechos
    © 2019 AIP Publishing
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/44670
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GCME - Artículos de revista [57]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Multilevel-HfO2-based-RRAM.pdf
    Tamaño:
    7.816Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10