Mostrar el registro sencillo del ítem

dc.contributor.advisorRueda Sabater, María Cristina es
dc.contributor.advisorVivaracho Pascual, Carlos Enrique es
dc.contributor.authorLamela Pérez, Adrián
dc.contributor.editorUniversidad de Valladolid. Escuela de Ingeniería Informática de Valladolid es
dc.date.accessioned2021-01-12T13:29:40Z
dc.date.available2021-01-12T13:29:40Z
dc.date.issued2020
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/44944
dc.description.abstractCyrcadian clock, cell cycle, astrophysics, are only the top of a much bigger iceberg of oscillatory signals. The study of this signals has been adressed since the decade of 90's, but it is now when the improvements of computer science allow us to achieve more results on these studies. Many models have been developed, including Cosinor methodology and some machine learning techniques. However, the rst one displays one major drawback, failing to represent a vast number of morphologies, while the second one acts as a black box with no enough precission. This work focuses on a novel approach called Frecuency Modulated Möbius (FMM) developed by the research group Inferencia con Restricciones (University of Valladolid) in 2019. It also serves as the natural sequel to a previous work of this author [6]. Three papers establish the basis of the methodology and interesting applications. The rst one describes the FMM methodology and was published in 2019 [1]. The second one studies the application of this model in an automatic analysis of electrocardiogram data, which is currently under revision [3]. The last one focuses on details of implementation, and it is still in development [2]. The author of this TFM has participated in the last two of them. Chapter 1 describes the theoretical details of FMM model and its derivations, including the multicomponent FMM model, restricted FMM model, and ECG-based FMM model. In Chapter 2, we discuss in more depth the details and implications of an automatic analysis of ECGs based on this methodology. Last Chapter is focused on practical uses of these models, and examples of use of the software developed.es
dc.description.sponsorshipDepartamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)es
dc.description.sponsorshipDepartamento de Estadística e Investigación Operativaes
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationFMMes
dc.subject.classificationModelo estadísticoes
dc.subject.classificationElectrocardiogramaes
dc.titleImplementación de un paquete de software para el ajuste de modelos FMM. Aplicación a la interpretación automática de la señal del electrocardiogramaes
dc.typeinfo:eu-repo/semantics/masterThesises
dc.description.degreeMáster en Inteligencia de Negocio y Big Data en Entornos Seguros / Business Intelligence and Big Data in Cyber-Secure Environmentses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem