Mostrar el registro sencillo del ítem

dc.contributor.authorMilo, V.
dc.contributor.authorZambelli, Cristian
dc.contributor.authorOlivo, P.
dc.contributor.authorPérez, Eduardo
dc.contributor.authorGonzález Ossorio, Óscar 
dc.contributor.authorWenger, Christian
dc.contributor.authorIelmini, Daniele
dc.date.accessioned2021-03-02T08:42:19Z
dc.date.available2021-03-02T08:42:19Z
dc.date.issued2019
dc.identifier.citation49th European Solid-State Device Research Conference (ESSDERC 2019). Cracovia, Polonia: IEEE Xplore, 2019, p. 174-177es
dc.identifier.isbn978-1-7281-1539-9es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/45430
dc.descriptionProducción Científicaes
dc.description.abstractRecently, artificial intelligence reached impressive milestones in many machine learning tasks such as the recognition of faces, objects, and speech. These achievements have been mostly demonstrated in software running on high-performance computers, such as the graphics processing unit (GPU) or the tensor processing unit (TPU). Novel hardware with in-memory processing is however more promising in view of the reduced latency and the improved energy efficiency. In this scenario, emerging memory technologies such as phase change memory (PCM) and resistive switching memory (RRAM), have been proposed for hardware accelerators of both learning and inference tasks. In this work, a multilevel 4kbit RRAM array is used to implement a 2-layer feedforward neural network trained with the MNIST dataset. The performance of the network in the inference mode is compared with recently proposed implementations using the same image dataset demonstrating the higher energy efficiency of our hardware, thanks to low current operation and an innovative multilevel programming scheme. These results support RRAM technology for in-memory hardware accelerators of machine learning.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEE Xplorees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectResistive RAM memory (RRAM)es
dc.subjectMemoria RAM resistiva (RRAM)es
dc.subjectMachine learninges
dc.subjectAprendizaje automatizadoes
dc.subjectNeural networkes
dc.subjectRed neuronales
dc.titleLow-energy inference machine with multilevel HfO2 RRAM arrayses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.holderhttps://ieeexplore.ieee.org/document/8901818es
dc.identifier.doi10.1109/ESSDERC.2019.8901818es
dc.title.event49th European Solid-State Device Research Conference (ESSDERC 2019)es
dc.description.projectGerman Research Foundation (grant FOR2093)es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/648635
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203.04 Inteligencia Artificiales


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem