Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez-Fernández, Alvar | |
dc.contributor.author | Baldán, Francisco Javier | |
dc.contributor.author | Sáinz Palmero, Gregorio Ismael | |
dc.contributor.author | Benítez, José Manuel | |
dc.contributor.author | Fuente Aparicio, María Jesús de la | |
dc.date.accessioned | 2021-03-09T13:52:50Z | |
dc.date.available | 2021-03-09T13:52:50Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Chemometrics and Intelligent Laboratory Systems, Noviembre 2018, vol. 182, p. 57–69 | es |
dc.identifier.issn | 0169-7439 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/45594 | |
dc.description | Producción Científica | es |
dc.description.abstract | Monitoring complex industrial plants is a very important task in order to ensure the management, reliability, safety and maintenance of the desired product quality. Early detection of abnormal events allows actions to prevent more serious consequences, improve the system's performance and reduce manufacturing costs. In this work, a new methodology for fault detection is introduced, based on time series models and statistical process control (MSPC). The proposal explicitly accounts for both dynamic and non-linearity properties of the system. A dynamic feature selection is carried out to interpret the dynamic relations by characterizing the auto- and crosscorrelations for every variable. After that, a time-series based model framework is used to obtain and validate the best descriptive model of the plant (either linear o non-linear). Fault detection is based on finding anomalies in the temporal residual signals obtained from the models by univariate and multivariate statistical process control charts. Finally, the performance of the method is validated on two benchmarks, a wastewater treatment plant and the Tennessee Eastman Plant. A comparison with other classical methods clearly demonstrates the over performance and feasibility of the proposed monitoring scheme. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es |
dc.subject.classification | Fault detection | es |
dc.subject.classification | Dynamic feature selection | es |
dc.subject.classification | Time-series modelling | es |
dc.subject.classification | Statistical process control charts | es |
dc.title | Fault detection based on time series modeling and multivariate statistical process control | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | Elsevier | es |
dc.identifier.doi | https://doi.org/10.1016/j.chemolab.2018.08.003 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/abs/pii/S0169743918303459 | es |
dc.identifier.publicationfirstpage | 57 | es |
dc.identifier.publicationlastpage | 69 | es |
dc.identifier.publicationtitle | Fault detection based on time series modeling and multivariate statistical process control | es |
dc.identifier.publicationvolume | 182 | es |
dc.peerreviewed | SI | es |
dc.description.project | Este trabajo forma parte del proyectos de investigación: MINECO-FEDER DPI2015-67341-C2-2- R, TIN2013-47210-P, TIN2016-81113-R | es |
dc.description.project | Junata de Andalucia, con el proyecto P12-TIC-2958 | es |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | es |