Mostrar el registro sencillo del ítem

dc.contributor.authorSánchez-Fernández, Alvar
dc.contributor.authorBaldán, Francisco Javier
dc.contributor.authorSáinz Palmero, Gregorio Ismael 
dc.contributor.authorBenítez, José Manuel
dc.contributor.authorFuente Aparicio, María Jesús de la 
dc.date.accessioned2021-03-09T13:52:50Z
dc.date.available2021-03-09T13:52:50Z
dc.date.issued2018
dc.identifier.citationChemometrics and Intelligent Laboratory Systems, Noviembre 2018, vol. 182, p. 57–69es
dc.identifier.issn0169-7439es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/45594
dc.descriptionProducción Científicaes
dc.description.abstractMonitoring complex industrial plants is a very important task in order to ensure the management, reliability, safety and maintenance of the desired product quality. Early detection of abnormal events allows actions to prevent more serious consequences, improve the system's performance and reduce manufacturing costs. In this work, a new methodology for fault detection is introduced, based on time series models and statistical process control (MSPC). The proposal explicitly accounts for both dynamic and non-linearity properties of the system. A dynamic feature selection is carried out to interpret the dynamic relations by characterizing the auto- and crosscorrelations for every variable. After that, a time-series based model framework is used to obtain and validate the best descriptive model of the plant (either linear o non-linear). Fault detection is based on finding anomalies in the temporal residual signals obtained from the models by univariate and multivariate statistical process control charts. Finally, the performance of the method is validated on two benchmarks, a wastewater treatment plant and the Tennessee Eastman Plant. A comparison with other classical methods clearly demonstrates the over performance and feasibility of the proposed monitoring scheme.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subject.classificationFault detectiones
dc.subject.classificationDynamic feature selectiones
dc.subject.classificationTime-series modellinges
dc.subject.classificationStatistical process control chartses
dc.titleFault detection based on time series modeling and multivariate statistical process controles
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderElsevieres
dc.identifier.doihttps://doi.org/10.1016/j.chemolab.2018.08.003es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S0169743918303459es
dc.identifier.publicationfirstpage57es
dc.identifier.publicationlastpage69es
dc.identifier.publicationtitleFault detection based on time series modeling and multivariate statistical process controles
dc.identifier.publicationvolume182es
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte del proyectos de investigación: MINECO-FEDER DPI2015-67341-C2-2- R, TIN2013-47210-P, TIN2016-81113-Res
dc.description.projectJunata de Andalucia, con el proyecto P12-TIC-2958es
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem