• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/45603

    Título
    Monitor-While-Drilling - based estimation of rock mass rating with computational intelligence: the case of tunnel excavation front
    Autor
    Galende Hernández, MartaAutoridad UVA Orcid
    Fuente Aparicio, María Jesús de laAutoridad UVA Orcid
    Sáinz Palmero, Gregorio IsmaelAutoridad UVA Orcid
    Menéndez, Manuel
    Congreso
    XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA), XIX Congreso Español sobre Tecnologías y Lógica Fuzzy
    Año del Documento
    2018
    Editorial
    F. Herrera et. al (Eds.)
    Descripción Física
    2p
    Descripción
    Producción Científica
    Documento Fuente
    XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA), XIX Congreso Español sobre Tecnologías y Lógica Fuzzy, 23-26 Octubre, 2018, Granada, España. p. 231-232
    Résumé
    The construction of tunnels has serious geomechan-ical uncertainties involving matters of both safety and budget.Nowadays, modern machinery gathers very useful informationabout the drilling process: the so-called Monitor While Drilling(MWD) data. So, one challenge is to provide support for thetunnel construction based on thison-sitedata .Here, an MWD based methodology to support tunnel con-struction is introduced: a Rock Mass Rating (RMR) estimationis provided by an MWD rocky based characterization of theexcavation front and expert knowledge [1].Well-known machine learning (ML) and computational intel-ligence (CI) techniques are used. In addition, a collectible and“interpretable”base of knowledge is obtained, linking MWDcharacterized excavation fronts and RMR.The results from a real tunnel case show a good and serviceableperformance: the accuracy of the RMR estimations is high,Errortest∼=3%, using a generated knowledge base of 15 fuzzyrules, 3 linguistic variables and 3 linguistic terms.This proposal is, however, is open to new algorithms toreinforce its performance
    Palabras Clave
    Tunneling
    RMR
    Sofcomputing
    Machine learning
    SDBR
    ISBN
    978-84-09-05643-9
    Patrocinador
    Este trabajo forma parte del proyecto de investigación: MINECO/FEDER: DPI2015-67341-C2-2-R.
    Version del Editor
    https://sci2s.ugr.es/caepia18/proceedings/proceedings.php#ESTYLF
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/45603
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP44 - Comunicaciones a congresos, conferencias, etc. [44]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    CAEPIA2018_paper_99.pdf
    Tamaño:
    452.9Ko
    Formato:
    Adobe PDF
    Descripción:
    Articulo principal
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10