Mostrar el registro sencillo del ítem
dc.contributor.author | Galende Hernández, Marta | |
dc.contributor.author | Fuente Aparicio, María Jesús de la | |
dc.contributor.author | Sáinz Palmero, Gregorio Ismael | |
dc.contributor.author | Menéndez, Manuel | |
dc.date.accessioned | 2021-03-09T19:39:15Z | |
dc.date.available | 2021-03-09T19:39:15Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA), XIX Congreso Español sobre Tecnologías y Lógica Fuzzy, 23-26 Octubre, 2018, Granada, España. p. 231-232 | es |
dc.identifier.isbn | 978-84-09-05643-9 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/45603 | |
dc.description | Producción Científica | es |
dc.description.abstract | The construction of tunnels has serious geomechan-ical uncertainties involving matters of both safety and budget.Nowadays, modern machinery gathers very useful informationabout the drilling process: the so-called Monitor While Drilling(MWD) data. So, one challenge is to provide support for thetunnel construction based on thison-sitedata .Here, an MWD based methodology to support tunnel con-struction is introduced: a Rock Mass Rating (RMR) estimationis provided by an MWD rocky based characterization of theexcavation front and expert knowledge [1].Well-known machine learning (ML) and computational intel-ligence (CI) techniques are used. In addition, a collectible and“interpretable”base of knowledge is obtained, linking MWDcharacterized excavation fronts and RMR.The results from a real tunnel case show a good and serviceableperformance: the accuracy of the RMR estimations is high,Errortest∼=3%, using a generated knowledge base of 15 fuzzyrules, 3 linguistic variables and 3 linguistic terms.This proposal is, however, is open to new algorithms toreinforce its performance | es |
dc.format.extent | 2p | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | F. Herrera et. al (Eds.) | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.subject.classification | Tunneling | es |
dc.subject.classification | RMR | es |
dc.subject.classification | Sofcomputing | es |
dc.subject.classification | Machine learning | es |
dc.subject.classification | SDBR | es |
dc.title | Monitor-While-Drilling - based estimation of rock mass rating with computational intelligence: the case of tunnel excavation front | es |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.relation.publisherversion | https://sci2s.ugr.es/caepia18/proceedings/proceedings.php#ESTYLF | es |
dc.title.event | XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA), XIX Congreso Español sobre Tecnologías y Lógica Fuzzy | es |
dc.description.project | Este trabajo forma parte del proyecto de investigación: MINECO/FEDER: DPI2015-67341-C2-2-R. | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |