Mostrar el registro sencillo del ítem

dc.contributor.authorGalende Hernández, Marta
dc.contributor.authorFuente Aparicio, María Jesús de la 
dc.contributor.authorSáinz Palmero, Gregorio Ismael 
dc.contributor.authorMenéndez, Manuel
dc.date.accessioned2021-03-09T19:39:15Z
dc.date.available2021-03-09T19:39:15Z
dc.date.issued2018
dc.identifier.citationXVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA), XIX Congreso Español sobre Tecnologías y Lógica Fuzzy, 23-26 Octubre, 2018, Granada, España. p. 231-232es
dc.identifier.isbn978-84-09-05643-9es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/45603
dc.descriptionProducción Científicaes
dc.description.abstractThe construction of tunnels has serious geomechan-ical uncertainties involving matters of both safety and budget.Nowadays, modern machinery gathers very useful informationabout the drilling process: the so-called Monitor While Drilling(MWD) data. So, one challenge is to provide support for thetunnel construction based on thison-sitedata .Here, an MWD based methodology to support tunnel con-struction is introduced: a Rock Mass Rating (RMR) estimationis provided by an MWD rocky based characterization of theexcavation front and expert knowledge [1].Well-known machine learning (ML) and computational intel-ligence (CI) techniques are used. In addition, a collectible and“interpretable”base of knowledge is obtained, linking MWDcharacterized excavation fronts and RMR.The results from a real tunnel case show a good and serviceableperformance: the accuracy of the RMR estimations is high,Errortest∼=3%, using a generated knowledge base of 15 fuzzyrules, 3 linguistic variables and 3 linguistic terms.This proposal is, however, is open to new algorithms toreinforce its performancees
dc.format.extent2pes
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherF. Herrera et. al (Eds.)es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subject.classificationTunnelinges
dc.subject.classificationRMRes
dc.subject.classificationSofcomputinges
dc.subject.classificationMachine learninges
dc.subject.classificationSDBRes
dc.titleMonitor-While-Drilling - based estimation of rock mass rating with computational intelligence: the case of tunnel excavation frontes
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.relation.publisherversionhttps://sci2s.ugr.es/caepia18/proceedings/proceedings.php#ESTYLFes
dc.title.eventXVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA), XIX Congreso Español sobre Tecnologías y Lógica Fuzzyes
dc.description.projectEste trabajo forma parte del proyecto de investigación: MINECO/FEDER: DPI2015-67341-C2-2-R.es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem