Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/45604
Título
Decentralized DPCA Model for Large-Scale Processes Monitoring
Congreso
24th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA’2019
Año del Documento
2019
Editorial
IEEE
Descripción Física
8p
Descripción
Producción Científica
Documento Fuente
24th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA’2019, Zaragoza, España, 2019
Resumen
Monitoring large-scale processes is a crucial task to ensure the safety and reliability of the plants. This paper proposes an approach for decentralized fault detection in largescale processes. The measured variables of the plant are divided into multiple and possibly overlapping blocks using different techniques based on data. Local monitoring methods are applied in each block using DPCA (Dynamic Principal Component Analysis) model. The local results are then fused by the Bayesian inference strategy. This paper also compares different techniques to decompose the plant looking for the best strategy from
the point of view of the fault detection results. The proposed method was applied to the widely used benchmark Tennessee Eastman Process, showing its effectiveness when compared with a centralized method and another decentralized technique.
Palabras Clave
Fault detection
Dynamic principal component analysis
Decentralized monitoring
Regression
Clustering
ISBN
978-1-7281-0303-7
Patrocinador
Este trabajo forma parte del proyecto de investigación: MINECO/FEDER: DPI2015-67341-C2-2-R.
Version del Editor
Propietario de los Derechos
IEEE
Idioma
eng
Tipo de versión
info:eu-repo/semantics/draft
Derechos
restrictedAccess
Aparece en las colecciones
Ficheros en el ítem