Mostrar el registro sencillo del ítem

dc.contributor.authorSánchez-Fernández, Alvar
dc.contributor.authorFuente Aparicio, María Jesús de la 
dc.contributor.authorSáinz Palmero, Gregorio Ismael 
dc.date.accessioned2021-03-09T19:46:00Z
dc.date.available2021-03-09T19:46:00Z
dc.date.issued2019
dc.identifier.citation24th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA’2019, Zaragoza, España, 2019es
dc.identifier.isbn978-1-7281-0303-7es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/45604
dc.descriptionProducción Científicaes
dc.description.abstractMonitoring large-scale processes is a crucial task to ensure the safety and reliability of the plants. This paper proposes an approach for decentralized fault detection in largescale processes. The measured variables of the plant are divided into multiple and possibly overlapping blocks using different techniques based on data. Local monitoring methods are applied in each block using DPCA (Dynamic Principal Component Analysis) model. The local results are then fused by the Bayesian inference strategy. This paper also compares different techniques to decompose the plant looking for the best strategy from the point of view of the fault detection results. The proposed method was applied to the widely used benchmark Tennessee Eastman Process, showing its effectiveness when compared with a centralized method and another decentralized technique.es
dc.format.extent8pes
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subject.classificationFault detectiones
dc.subject.classificationDynamic principal component analysises
dc.subject.classificationDecentralized monitoringes
dc.subject.classificationRegressiones
dc.subject.classificationClusteringes
dc.titleDecentralized DPCA Model for Large-Scale Processes Monitoringes
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.holderIEEEes
dc.identifier.doi10.1109/ETFA.2019.8869128es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/8869128es
dc.title.event24th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA’2019es
dc.description.projectEste trabajo forma parte del proyecto de investigación: MINECO/FEDER: DPI2015-67341-C2-2-R.es
dc.type.hasVersioninfo:eu-repo/semantics/draftes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem