Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez-Fernández, Alvar | |
dc.contributor.author | Fuente Aparicio, María Jesús de la | |
dc.contributor.author | Sáinz Palmero, Gregorio Ismael | |
dc.date.accessioned | 2021-03-09T19:46:00Z | |
dc.date.available | 2021-03-09T19:46:00Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | 24th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA’2019, Zaragoza, España, 2019 | es |
dc.identifier.isbn | 978-1-7281-0303-7 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/45604 | |
dc.description | Producción Científica | es |
dc.description.abstract | Monitoring large-scale processes is a crucial task to ensure the safety and reliability of the plants. This paper proposes an approach for decentralized fault detection in largescale processes. The measured variables of the plant are divided into multiple and possibly overlapping blocks using different techniques based on data. Local monitoring methods are applied in each block using DPCA (Dynamic Principal Component Analysis) model. The local results are then fused by the Bayesian inference strategy. This paper also compares different techniques to decompose the plant looking for the best strategy from the point of view of the fault detection results. The proposed method was applied to the widely used benchmark Tennessee Eastman Process, showing its effectiveness when compared with a centralized method and another decentralized technique. | es |
dc.format.extent | 8p | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | IEEE | es |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es |
dc.subject.classification | Fault detection | es |
dc.subject.classification | Dynamic principal component analysis | es |
dc.subject.classification | Decentralized monitoring | es |
dc.subject.classification | Regression | es |
dc.subject.classification | Clustering | es |
dc.title | Decentralized DPCA Model for Large-Scale Processes Monitoring | es |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.rights.holder | IEEE | es |
dc.identifier.doi | 10.1109/ETFA.2019.8869128 | es |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/8869128 | es |
dc.title.event | 24th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA’2019 | es |
dc.description.project | Este trabajo forma parte del proyecto de investigación: MINECO/FEDER: DPI2015-67341-C2-2-R. | es |
dc.type.hasVersion | info:eu-repo/semantics/draft | es |