Show simple item record

dc.contributor.authorChen, Xueming
dc.contributor.authorRodríguez Muñoz, Yadira 
dc.contributor.authorLópez, Juan C.
dc.contributor.authorMuñoz Torre, Raúl 
dc.contributor.authorNi, Bing-Jie
dc.contributor.authorSin, Gürkan
dc.date.accessioned2021-06-04T11:34:58Z
dc.date.available2021-06-04T11:34:58Z
dc.date.issued2020
dc.identifier.citationACS Sustainable Chemistry & Engineering, 2020, vol. 8, n. 9, p. 3906-3912es
dc.identifier.issn2168-0485es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/46748
dc.descriptionProducción Científicaes
dc.description.abstractMethylocystis hirsuta, a type II methanotroph, has been experimentally demonstrated to be able to efficiently synthesize polyhydroxyalkanoates (PHA) from biogas under nutrient-limited conditions. A mechanistic model capable of describing the relevant processes of M. hirsuta, which is currently not available, would therefore lay a solid foundation for future practical demonstration and optimization of the PHA synthesis technology using biogas. To this end, dedicated batch tests were designed and conducted to obtain experimental data for different mechanistic processes of M. hirsuta. Through utilizing the experimental data of well-designed batch tests and following a step-wise model calibration/validation protocol, the stoichiometrics and kinetics of M. hirsuta are reported for the first time, including the yields of growth and PHA synthesis on CH4 (0.14 ± 0.01 g COD g–1 COD and 0.25 ± 0.02 g COD g–1 COD), the CH4 and O2 affinity constants (5.1 ± 2.1 g COD m–3 and 4.1 ± 1.7 g O2 m–3), the maximum PHA consumption rate (0.019 ± 0.001 g COD g–1 COD d–1), and the maximum PHA synthesis rate on CH4 (0.39 ± 0.05 g COD g–1 COD d–1). Through applying the developed model, an optimal O2:CH4 molar ratio of 1.6 mol O2 mol–1 CH4 was found to maximize the PHA synthesis by M. hirsuta. Practically, the model and parameters obtained would not only benefit the design and operation of bioreactors performing PHA synthesis from biogas, but also enable specific research on selection for type II methanotrophs in diverse environments.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherAmerican Chemical Societyes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationBiogáses
dc.subject.classificationPolihidroxialcanoatoes
dc.subject.classificationBiogases
dc.subject.classificationPolyhydroxyalkanoatees
dc.titleModeling of Polyhydroxyalkanoate Synthesis from Biogas byMethylocystis hirsutaes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 American Chemical Societyes
dc.identifier.doi10.1021/acssuschemeng.9b07414es
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acssuschemeng.9b07414es
dc.identifier.publicationfirstpage3906es
dc.identifier.publicationissue9es
dc.identifier.publicationlastpage3912es
dc.identifier.publicationtitleACS Sustainable Chemistry & Engineeringes
dc.identifier.publicationvolume8es
dc.peerreviewedSIes
dc.description.projectAustralian Research Council (ARC) through Future Fellowship (FT160100195)es
dc.description.projectJunta de Castilla y León y EU-FEDER (CLU 2017-09) y (UIC 71)es
dc.description.projectEuropean Union’s Horizon 2020 research and innovation program. grant agreement no. 790231.
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/790231
dc.identifier.essn2168-0485es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.subject.unesco23 Químicaes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record