• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/48465

    Título
    Integration of Computer Vision and Wireless Networks to Provide Indoor Positioning
    Autor
    Duque Domingo, JaimeAutoridad UVA Orcid
    Gómez García-Bermejo, JaimeAutoridad UVA Orcid
    Zalama Casanova, EduardoAutoridad UVA Orcid
    Cerrada, Carlos
    Valero, Enrique
    Año del Documento
    2019
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Sensors, 2019, vol. 19, n. 24, 5495
    Resumen
    This work presents an integrated Indoor Positioning System which makes use of WiFi signals and RGB cameras, such as surveillance cameras, to track and identify people navigating in complex indoor environments. Previous works have often been based on WiFi, but accuracy is limited. Other works use computer vision, but the problem of identifying concrete persons relies on such techniques as face recognition, which are not useful if there are many unknown people, or where the robustness decreases when individuals are seen from different points of view. The solution presented in this paper is based on an accurate combination of smartphones along with RGB cameras, such as those used in surveillance infrastructures. WiFi signals from smartphones allow the persons present in the environment to be identified uniquely, while the data coming from the cameras allow the precision of location to be improved. The system is nonintrusive, and biometric data about subjects is not required. In this paper, the proposed method is fully described and experiments performed to test the system are detailed along with the results obtained.
    Palabras Clave
    Indoor positioning
    Posicionamiento en interiores
    RGB cameras
    Cámaras RGB
    WiFi
    Wireless networks
    Redes inalámbricas
    ISSN
    1424-8220
    Revisión por pares
    SI
    DOI
    10.3390/s19245495
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades (grant RTI2018-096652-B-I00)
    Junta de Castilla y León (grant VA233P18)
    Ministerio de Economía, Industria y Competitividad (project DPI2016-77677-P)
    Comunidad de Madrid (project S2018/NMT-4331)
    Version del Editor
    https://www.mdpi.com/1424-8220/19/24/5495
    Propietario de los Derechos
    © 2019 MDPI
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/48465
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • ITAP - Artículos de revista [53]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Integration-computer-vision-wireless-networks.pdf
    Tamaño:
    9.871Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10