• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Institutos de Investigación
    • Instituto de Investigación en Matemáticas (IMUVA)
    • IMUVA - Artículos de Revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Institutos de Investigación
    • Instituto de Investigación en Matemáticas (IMUVA)
    • IMUVA - Artículos de Revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/48540

    Título
    Differential stability properties in convex scalar and vector optimization
    Autor
    An, Duong Thi Viet
    Gutiérrez Vaquero, CésarAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Set-Valued and Variational Analysis, 2021, vol. 29, p. 893-914.
    Resumo
    This paper focuses on formulas for the ε-subdifferential of the optimal value function of scalar and vector convex optimization problems. These formulas can be applied when the set of solutions of the problem is empty. In the scalar case, both unconstrained problems and problems with an inclusion constraint are considered. For the last ones, limiting results are derived, in such a way that no qualification conditions are required. The main mathematical tool is a limiting calculus rule for the ε-subdifferential of the sum of convex and lower semicontinuous functions defined on a (non necessarily reflexive) Banach space. In the vector case, unconstrained problems are studied and exact formulas are derived by linear scalarizations. These results are based on a concept of infimal set, the notion of cone proper set and an ε-subdifferential for convex vector functions due to Taa.
    Materias Unesco
    12 Matemáticas
    Palabras Clave
    Differential stability
    ε-subdifferential
    Parametric convex programming
    Limiting calculus rule
    Optimal value function
    Approximate solution
    Vector optimization
    Infimal set
    Cone proper set
    Weak minimal solution
    ISSN
    1877-0533
    Revisión por pares
    SI
    DOI
    10.1007/s11228-021-00601-4
    Patrocinador
    Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional (MCI/AEI/FEDER, UE) under project (PID2020-112491GB-I00)
    Version del Editor
    https://link.springer.com/article/10.1007/s11228-021-00601-4
    Propietario de los Derechos
    © 2021 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/48540
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [145]
    • IMUVA - Artículos de Revista [103]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    differential-stability-properties-in-convex-scalar-and-vector-optimization.pdf
    Tamaño:
    457.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10