Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/49024
Título
A neural network potential for searching the atomic structures of pure and mixed nanoparticles. Application to ZnMg nanoalloys with an eye on their anticorrosive properties
Año del Documento
2021
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Acta Materialia, 2021, vol. 220, 117341
Résumé
The accurate description of the potential energy landscape of moderate-sized nanoparticles is a formidable task, but of paramount importance if one aims to characterize, in a realistic way, their physical and chemical properties. We present here a Neural Network potential able to predict structures of pure and mixed nanoparticles with an error in energy and forces of the order of chemical accuracy as compared with the values provided by the theoretical method used in the training process, in our case the density functional theory. The neural network is integrated into a basin-hopping algorithm which dynamically feeds the training process. The main ingredients of the neural network algorithm as well as the protocol used for its implementation and training are detailed, with particular emphasis on those aspects that make it so efficient and transferable. As a first test, we have applied it to the determination of the global minimum structures of ZnMg nanoalloys with up to 52 atoms and stoichiometries corresponding to MgZn and MgZn, of special interest in the context of anticorrosive coatings. We present and discuss the structural properties, chemical order, stability and pertinent electronic indicators, and we extract some conclusions on fundamental aspects that may be at the roots of the good performance of ZnMg nanoalloys as protective coatings. Finally, we comment on the step forward that the presented machine learning approach constitutes, both in the fact that it allows to accurately explore the potential energy surface of systems that other methodologies can not, and that it opens new prospects for a variety of problems in Materials Science.
Palabras Clave
Atomistic simulations
Simulaciones atomísticas
Artificial neural networks
Redes neuronales artificiales
Density functional theory
Teoría del funcional de densidad
Magnesium alloys
Aleaciones de magnesio
ISSN
1359-6454
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad (project PGC2018-093745-B-I00)
Propietario de los Derechos
© 2021 Elsevier
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional