Mostrar el registro sencillo del ítem

dc.contributor.authorChejara, Pankaj
dc.contributor.authorPrieto, Luis P.
dc.contributor.authorRuiz Calleja, Adolfo 
dc.contributor.authorRodríguez Triana, María Jesús
dc.contributor.authorKant Shankar, Shashi
dc.contributor.authorKasepalu, Reet
dc.date.accessioned2021-10-19T11:50:42Z
dc.date.available2021-10-19T11:50:42Z
dc.date.issued2021
dc.identifier.citationSensors, 2021, vol. 21, n. 8, 2863es
dc.identifier.issn1424-8220es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/49171
dc.descriptionProducción Científicaes
dc.description.abstractMultimodal Learning Analytics (MMLA) researchers are progressively employing machine learning (ML) techniques to develop predictive models to improve learning and teaching practices. These predictive models are often evaluated for their generalizability using methods from the ML domain, which do not take into account MMLA’s educational nature. Furthermore, there is a lack of systematization in model evaluation in MMLA, which is also reflected in the heterogeneous reporting of the evaluation results. To overcome these issues, this paper proposes an evaluation framework to assess and report the generalizability of ML models in MMLA (EFAR-MMLA). To illustrate the usefulness of EFAR-MMLA, we present a case study with two datasets, each with audio and log data collected from a classroom during a collaborative learning session. In this case study, regression models are developed for collaboration quality and its sub-dimensions, and their generalizability is evaluated and reported. The framework helped us to systematically detect and report that the models achieved better performance when evaluated using hold-out or cross-validation but quickly degraded when evaluated across different student groups and learning contexts. The framework helps to open up a “wicked problem” in MMLA research that remains fuzzy (i.e., the generalizability of ML models), which is critical to both accumulating knowledge in the research community and demonstrating the practical relevance of these techniques.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationMultimodal learninges
dc.subject.classificationAprendizaje multimodales
dc.subject.classificationMachine learninges
dc.subject.classificationAprendizaje automáticoes
dc.titleEFAR-MMLA: An evaluation framework to assess and report generalizability of machine learning models in MMLAes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 MDPIes
dc.identifier.doi10.3390/s21082863es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/21/8/2863es
dc.peerreviewedSIes
dc.description.projectFondo Europeo de Desarrollo Regional - Agencia Nacional de Investigación (grants TIN2017-85179-C3-2-R and TIN2014-53199-C3-2-R)es
dc.description.projectFondo Europeo de Desarrollo Regional - Junta de Castilla y León (grant VA257P18)es
dc.description.projectComisión Europea (grant 588438-EPP-1- 2017-1-EL-EPPKA2-KA)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem