Mostrar el registro sencillo del ítem

dc.contributor.authorEr, Erkan 
dc.contributor.authorVilla Torrano, Cristina
dc.contributor.authorDimitriadis Damoulis, Ioannis 
dc.contributor.authorGašević, Dragan
dc.contributor.authorBote Lorenzo, Miguel Luis 
dc.contributor.authorAsensio Pérez, Juan Ignacio 
dc.contributor.authorGómez Sánchez, Eduardo 
dc.contributor.authorMartínez Monés, Alejandra 
dc.date.accessioned2021-10-20T08:57:11Z
dc.date.available2021-10-20T08:57:11Z
dc.date.issued2021
dc.identifier.citationScheffel, M.; Dowell, N.; Joksimovic, S.; Siemens, G. Proceedings of the 11th International Conference on Learning Analytics & Knowledge (LAK21). Online, 2021, p. 196–206es
dc.identifier.isbn978-1-4503-8935-8es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/49207
dc.descriptionProducción Científicaes
dc.description.abstractPeer reviews offer many learning benefits. Understanding students’ engagement in them can help design effective practices. Although learning analytics can be effective in generating such insights, its application in peer reviews is scarce. Theory can provide the necessary foundations to inform the design of learning analytics research and the interpretation of its results. In this paper, we followed a theory-based learning analytics approach to identifying students’ engagement patterns in a peer review activity facilitated via a web-based tool called Synergy. Process mining was applied on temporal learning data, traced by Synergy. The theory about peer review helped determine relevant data points and guided the top-down approach employed for their analysis: moving from the global phases to regulation of learning, and then to micro-level actions. The results suggest that theory and learning analytics should mutually relate with each other. Mainly, theory played a critical role in identifying a priori engagement patterns, which provided an informed perspective when interpreting the results. In return, the results of the learning analytics offered critical insights about student behavior that was not expected by the theory (i.e., low levels of co-regulation). The findings provided important implications for refining the grounding theory and its operationalization in Synergy.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSociety for Learning Analytics Research (SoLAR)es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationPeer reviewses
dc.subject.classificationRevisiones por pareses
dc.subject.classificationLearning analyticses
dc.subject.classificationAnalítica de aprendizajees
dc.subject.classificationStudent engagementes
dc.subject.classificationEstudiante - Participaciónes
dc.subject.classificationProcess mininges
dc.subject.classificationMinería de procesoses
dc.titleTheory-based learning analytics to explore student engagement patterns in a peer review activityes
dc.title.alternativeLAK21: 11th International Conference on Learning Analytics & Knowledgees
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.holder© 2021 Association for Computing Machineryes
dc.identifier.doi10.1145/3448139.3448158es
dc.relation.publisherversionhttps://www.solaresearch.org/events/lak/lak21/es
dc.title.eventInternational Conference on Learning Analytics & Knowledge, LAK21 (11º. 2021)es
dc.description.projectAgencia Estatal de Investigación - Fondo Europeo de Desarrollo Regional (project TIN2017-85179-C3-2-R)es
dc.description.projectJunta de Castilla y León - Fondo Europeo de Desarrollo Regional (project VA257P18)es
dc.description.projectComisión Europea (project 588438-EPP-1-2017-1-EL-EPPKA2-KA)es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/793317
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem