• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Sistemas Inteligentes y Cooperativos/Educación, Medios, Informática y Cultura (GSIC/EMIC)
    • GSIC - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Sistemas Inteligentes y Cooperativos/Educación, Medios, Informática y Cultura (GSIC/EMIC)
    • GSIC - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/49207

    Título
    Theory-based learning analytics to explore student engagement patterns in a peer review activity
    Otros títulos
    LAK21: 11th International Conference on Learning Analytics & Knowledge
    Autor
    Er, ErkanAutoridad UVA Orcid
    Villa Torrano, CristinaAutoridad UVA
    Dimitriadis Damoulis, IoannisAutoridad UVA Orcid
    Gašević, Dragan
    Bote Lorenzo, Miguel LuisAutoridad UVA Orcid
    Asensio Pérez, Juan IgnacioAutoridad UVA Orcid
    Gómez Sánchez, EduardoAutoridad UVA Orcid
    Martínez Monés, AlejandraAutoridad UVA
    Congreso
    International Conference on Learning Analytics & Knowledge, LAK21 (11º. 2021)
    Año del Documento
    2021
    Editorial
    Society for Learning Analytics Research (SoLAR)
    Descripción
    Producción Científica
    Documento Fuente
    Scheffel, M.; Dowell, N.; Joksimovic, S.; Siemens, G. Proceedings of the 11th International Conference on Learning Analytics & Knowledge (LAK21). Online, 2021, p. 196–206
    Resumo
    Peer reviews offer many learning benefits. Understanding students’ engagement in them can help design effective practices. Although learning analytics can be effective in generating such insights, its application in peer reviews is scarce. Theory can provide the necessary foundations to inform the design of learning analytics research and the interpretation of its results. In this paper, we followed a theory-based learning analytics approach to identifying students’ engagement patterns in a peer review activity facilitated via a web-based tool called Synergy. Process mining was applied on temporal learning data, traced by Synergy. The theory about peer review helped determine relevant data points and guided the top-down approach employed for their analysis: moving from the global phases to regulation of learning, and then to micro-level actions. The results suggest that theory and learning analytics should mutually relate with each other. Mainly, theory played a critical role in identifying a priori engagement patterns, which provided an informed perspective when interpreting the results. In return, the results of the learning analytics offered critical insights about student behavior that was not expected by the theory (i.e., low levels of co-regulation). The findings provided important implications for refining the grounding theory and its operationalization in Synergy.
    Palabras Clave
    Peer reviews
    Revisiones por pares
    Learning analytics
    Analítica de aprendizaje
    Student engagement
    Estudiante - Participación
    Process mining
    Minería de procesos
    ISBN
    978-1-4503-8935-8
    DOI
    10.1145/3448139.3448158
    Patrocinador
    Agencia Estatal de Investigación - Fondo Europeo de Desarrollo Regional (project TIN2017-85179-C3-2-R)
    Junta de Castilla y León - Fondo Europeo de Desarrollo Regional (project VA257P18)
    Comisión Europea (project 588438-EPP-1-2017-1-EL-EPPKA2-KA)
    Patrocinador
    info:eu-repo/grantAgreement/EC/H2020/793317
    Version del Editor
    https://www.solaresearch.org/events/lak/lak21/
    Propietario de los Derechos
    © 2021 Association for Computing Machinery
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/49207
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GSIC - Comunicaciones a congresos, conferencias, etc. [16]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Theory-based-learning-analytics.pdf
    Tamaño:
    1.564Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10