• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PROGETTI DI LAUREA FINALE
    • Trabajos Fin de Máster UVa
    • Mostra Item
    •   UVaDOC Home
    • PROGETTI DI LAUREA FINALE
    • Trabajos Fin de Máster UVa
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/4953

    Título
    Adaptive model predictive control
    Autor
    Ebrahim Sadjadi, Mohammad
    Director o Tutor
    Prada Moraga, César deAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela de Ingenierías IndustrialesAutoridad UVA
    Año del Documento
    2013
    Titulación
    Máster en Investigación en Ingeniería de Procesos y Sistemas Industriales
    Abstract
    The problem of model predictive control (MPC) under parametric uncertainties for a class of nonlinear systems is addressed. An adaptive identi er is used to estimate the pa- rameters and the state variables simultaneously. The algorithm proposed guarantees the convergence of parameters and the state variables to their true value. The task is posed as an adaptive model predictive control problem in which the controller is required to steer the system to the system setpoint that optimizes a user-speci ed objective function. The technique of adaptive model predictive control is developed for two broad classes of systems. The rst class of system considered is a class of uncertain nonlinear systems with input to state stability property. Using a generalization of the set-based adaptive estimation technique, the estimates of the parameters and state are updated to guarantee convergence to a neighborhood of their true value. The second involves a method of determining appropriate excitation conditions for nonlin- ear systems. Since the identi cation of the true cost surface is paramount to the success of the integration scheme, novel parameter estimation techniques with better convergence properties are developed. The estimation routine allows exact reconstruction of the systems unknown parameters in nite-time. The applicability of the identi er to improve upon the performance of existing adaptive controllers is demonstrated. Then, an adaptive nonlinear model predictive controller strategy is integrated to this estimation algorithm in which ro- bustness features are incorporated to account for the e ect of the model uncertainty. To study the practical applicability of the developed method, the estimation of state vari- ables and unknown parameters in a stirred tank process has been performed. The results of the experimental application demonstrate the ability of the proposed techniques to estimate the state variables and parameters of an uncertain practical system.
    Materias (normalizadas)
    Control automático
    Departamento
    Departamento de Ingeniería de Sistemas y Automática
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/4953
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Máster UVa [7002]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    TFM-I-46.pdf
    Tamaño:
    848.8Kb
    Formato:
    Adobe PDF
    Descripción:
    Texto completo del trabajo en .pdf
    Thumbnail
    Mostra/Apri
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10