Mostrar el registro sencillo del ítem
dc.contributor.advisor | Prada Moraga, César de | es |
dc.contributor.author | Ebrahim Sadjadi, Mohammad | |
dc.contributor.editor | Universidad de Valladolid. Escuela de Ingenierías Industriales | es |
dc.date.accessioned | 2014-06-10T08:38:33Z | |
dc.date.available | 2014-06-10T08:38:33Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/4953 | |
dc.description.abstract | The problem of model predictive control (MPC) under parametric uncertainties for a class of nonlinear systems is addressed. An adaptive identi er is used to estimate the pa- rameters and the state variables simultaneously. The algorithm proposed guarantees the convergence of parameters and the state variables to their true value. The task is posed as an adaptive model predictive control problem in which the controller is required to steer the system to the system setpoint that optimizes a user-speci ed objective function. The technique of adaptive model predictive control is developed for two broad classes of systems. The rst class of system considered is a class of uncertain nonlinear systems with input to state stability property. Using a generalization of the set-based adaptive estimation technique, the estimates of the parameters and state are updated to guarantee convergence to a neighborhood of their true value. The second involves a method of determining appropriate excitation conditions for nonlin- ear systems. Since the identi cation of the true cost surface is paramount to the success of the integration scheme, novel parameter estimation techniques with better convergence properties are developed. The estimation routine allows exact reconstruction of the systems unknown parameters in nite-time. The applicability of the identi er to improve upon the performance of existing adaptive controllers is demonstrated. Then, an adaptive nonlinear model predictive controller strategy is integrated to this estimation algorithm in which ro- bustness features are incorporated to account for the e ect of the model uncertainty. To study the practical applicability of the developed method, the estimation of state vari- ables and unknown parameters in a stirred tank process has been performed. The results of the experimental application demonstrate the ability of the proposed techniques to estimate the state variables and parameters of an uncertain practical system. | es |
dc.description.sponsorship | Departamento de Ingeniería de Sistemas y Automática | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Control automático | es |
dc.title | Adaptive model predictive control | es |
dc.type | info:eu-repo/semantics/masterThesis | es |
dc.description.degree | Máster en Investigación en Ingeniería de Procesos y Sistemas Industriales | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
- Trabajos Fin de Máster UVa [6578]
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International