• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • TRABAJOS FIN DE ESTUDIOS
    • Trabajos Fin de Grado UVa
    • Ver ítem
    •   UVaDOC Principal
    • TRABAJOS FIN DE ESTUDIOS
    • Trabajos Fin de Grado UVa
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/50577

    Título
    La aproximación minimax y el algoritmo de Remez. Aplicaciones
    Autor
    Esteban García, Marta
    Director o Tutor
    Abia Llera, Luis MaríaAutoridad UVA
    Editor
    Universidad de Valladolid. Facultad de CienciasAutoridad UVA
    Año del Documento
    2021
    Titulación
    Grado en Matemáticas
    Resumen
    El proyecto hará una presentación unificada de la teoría sobre la aproximación polinómica minimax continua y discreta, y la solución minimax de sistemas lineales: condición de Haar, algoritmo del intercambio y algoritmo de Remez. Parte del proyecto es la implementación efectiva en Matlab de los distintos algoritmos para la computación de aproximaciones óptimas en la norma infinito. El trabajo consta de tres partes: En el primer capítulo se repasan nociones fundamentales de teoría de la aproximación. Entre ellas se encuentran definiciones elementales como son la convexidad o envolvente convexa y ciertos teoremas de convexidad como el de Helly o el de Carathéodory, que posteriormente serán utilizados. También, ciertos resultados que garantizan la existencia y la unicidad de las mejores aproximaciones en espacios normados, algunos estudiados en el Grado. En el segundo capítulo se consideran los problemas de aproximación asociados a la solución de sistemas lineales de ecuaciones sobredeterminados. Cuando se trata de aproximaciones en la norma infinito, se enuncian teoremas de caracterización de la solución; se analiza el caso particular de hallar la solución minimax de un sistema de n+1 ecuaciones con n incógnitas. Para conseguir resolver los problemas, se estudian dos algoritmos: el ascendente y el descendente. Ambos están analizados y programados con el lenguaje de programación MATLAB. En el tercer y último capítulo se trata el problema general de la aproximación de una función continua en un intervalo compacto mediante un polinomio. Se habla también de un problema más general en que los polinomios serán reemplazados por otras funciones continuas. Se estudiará la teoría minimax, exponiendo el teorema de caracterizacion y ciertos teoremas que garantizan la unicidad y que acotan el error en dicha teoría. Además, se explicará el algoritmo de intercambio de Remez, el cual se implementará en MATLAB.
    Palabras Clave
    Aproximación minimax
    Algoritmo de Remez
    Condición de Haar
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/50577
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [30858]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    TFG-G5332.pdf
    Tamaño:
    737.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10