Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez Cagigal, Víctor 
dc.contributor.authorSantamaría Vázquez, Eduardo
dc.contributor.authorHornero Sánchez, Roberto 
dc.date.accessioned2021-12-15T09:10:03Z
dc.date.available2021-12-15T09:10:03Z
dc.date.issued2021
dc.identifier.citationApplied Soft Computing, 2021, vol. 115, 108176es
dc.identifier.issn1568-4946es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/50948
dc.descriptionProducción Científicaes
dc.description.abstractMany brain–computer interface (BCI) studies overlook the channel optimization due to its inherent complexity. However, a careful channel selection increases the performance and users’ comfort while reducing the cost of the system. Evolutionary meta-heuristics, which have demonstrated their usefulness in solving complex problems, have not been fully exploited yet in this context. The purpose of the study is two-fold: (1) to propose a novel algorithm to find an optimal channel set for each user and compare it with other existing meta-heuristics; and (2) to establish guidelines for adapting these optimization strategies to this framework. A total of 3 single-objective (GA, BDE, BPSO) and 4 multi-objective (NSGA-II, BMOPSO, SPEA2, PEAIL) existing algorithms have been adapted and tested with 3 public databases: ‘BCI competition III–dataset II’, ‘Center Speller’ and ‘RSVP Speller’. Dual-Front Sorting Algorithm (DFGA), a novel multi-objective discrete method especially designed to the BCI framework, is proposed as well. Results showed that all meta-heuristics outperformed the full set and the common 8-channel set for P300-based BCIs. DFGA showed a significant improvement of accuracy of 3.9% over the latter using also 8 channels; and obtained similar accuracies using a mean of 4.66 channels. A topographic analysis also reinforced the need to customize a channel set for each user. Thus, the proposed method computes an optimal set of solutions with different number of channels, allowing the user to select the most appropriate distribution for the next BCI sessions.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationBrain-computer interfaceses
dc.subject.classificationInterfaces cerebro-computadoraes
dc.subject.classificationEvolutionary algorithmses
dc.subject.classificationAlgoritmos evolutivoses
dc.titleBrain-computer interface channel selection optimization using meta-heuristics and evolutionary algorithmses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 Elsevieres
dc.identifier.doi10.1016/j.asoc.2021.108176es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1568494621010292?via%3Dihubes
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades (project RTC2019-007350-1)es
dc.description.projectComisión Europea (project 0702_MIGRAINEE_2_E)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem