Mostrar el registro sencillo del ítem

dc.contributor.authorDiez, Francisco Javier
dc.contributor.authorNavas Gracia, Luis Manuel 
dc.contributor.authorChico Santamarta, Leticia
dc.contributor.authorCorrea Guimaraes, Adriana 
dc.contributor.authorMartínez Rodríguez, Andrés 
dc.date.accessioned2022-04-07T11:08:42Z
dc.date.available2022-04-07T11:08:42Z
dc.date.issued2020
dc.identifier.citationAgronomy, 2020, vol. 10, n. 1, 96es
dc.identifier.issn2073-4395es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/52811
dc.descriptionProducción Científicaes
dc.description.abstractThis article evaluates horizontal daily global solar irradiation predictive modelling using artificial neural networks (ANNs) for its application in agricultural sciences and technologies. An eight year data series (i.e., training networks period between 2004–2010, with 2011 as the validation year) was measured at an agrometeorological station located in Castile and León, Spain, owned by the irrigation advisory system SIAR. ANN models were designed and evaluated with different neuron numbers in the input and hidden layers. The only neuron used in the outlet layer was the global solar irradiation simulated the day after. Evaluated values of the input data were the horizontal daily global irradiation of the current day [H(t)] and two days before [H(t−1), H(t−2)], the day of the year [J(t)], and the daily clearness index [Kt(t)]. Validated results showed that best adjustment models are the ANN 7 model (RMSE = 3.76 MJ/(m2·d), with two inputs ([H(t), Kt(t)]) and four neurons in the hidden layer) and the ANN 4 model (RMSE = 3.75 MJ/(m2·d), with two inputs ([H(t), J(t)]) and two neurons in the hidden layer). Thus, the studied ANN models had better results compared to classic methods (CENSOLAR typical year, weighted moving mean, linear regression, Fourier and Markov analysis) and are practically easier as they need less input variables.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationSolar irradiationes
dc.subject.classificationIrradiación solares
dc.subject.classificationEvapotranspirationes
dc.subject.classificationEvapotranspiraciónes
dc.subject.classificationAgrometeorologyes
dc.subject.classificationAgrometeorologíaes
dc.subject.classificationArtificial neuronal networkses
dc.subject.classificationRedes neuronales artificialeses
dc.titlePrediction of horizontal daily global solar irradiation using artificial neural networks (ANNs) in the Castile and León region, Spaines
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 The Authorses
dc.identifier.doi10.3390/agronomy10010096es
dc.relation.publisherversionhttps://www.mdpi.com/2073-4395/10/1/96/htmes
dc.peerreviewedSIes
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem