• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/52811

    Título
    Prediction of horizontal daily global solar irradiation using artificial neural networks (ANNs) in the Castile and León region, Spain
    Autor
    Diez, Francisco Javier
    Navas Gracia, Luis ManuelAutoridad UVA
    Chico Santamarta, Leticia
    Correa Guimaraes, AdrianaAutoridad UVA
    Martínez Rodríguez, AndrésAutoridad UVA Orcid
    Año del Documento
    2020
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Agronomy, 2020, vol. 10, n. 1, 96
    Resumo
    This article evaluates horizontal daily global solar irradiation predictive modelling using artificial neural networks (ANNs) for its application in agricultural sciences and technologies. An eight year data series (i.e., training networks period between 2004–2010, with 2011 as the validation year) was measured at an agrometeorological station located in Castile and León, Spain, owned by the irrigation advisory system SIAR. ANN models were designed and evaluated with different neuron numbers in the input and hidden layers. The only neuron used in the outlet layer was the global solar irradiation simulated the day after. Evaluated values of the input data were the horizontal daily global irradiation of the current day [H(t)] and two days before [H(t−1), H(t−2)], the day of the year [J(t)], and the daily clearness index [Kt(t)]. Validated results showed that best adjustment models are the ANN 7 model (RMSE = 3.76 MJ/(m2·d), with two inputs ([H(t), Kt(t)]) and four neurons in the hidden layer) and the ANN 4 model (RMSE = 3.75 MJ/(m2·d), with two inputs ([H(t), J(t)]) and two neurons in the hidden layer). Thus, the studied ANN models had better results compared to classic methods (CENSOLAR typical year, weighted moving mean, linear regression, Fourier and Markov analysis) and are practically easier as they need less input variables.
    Palabras Clave
    Solar irradiation
    Irradiación solar
    Evapotranspiration
    Evapotranspiración
    Agrometeorology
    Agrometeorología
    Artificial neuronal networks
    Redes neuronales artificiales
    ISSN
    2073-4395
    Revisión por pares
    SI
    DOI
    10.3390/agronomy10010096
    Version del Editor
    https://www.mdpi.com/2073-4395/10/1/96/htm
    Propietario de los Derechos
    © 2020 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/52811
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP42 - Artículos de revista [293]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Prediction-horizontal-daily-global-solar-irradiation.pdf
    Tamaño:
    2.213Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10