Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/53069
Título
Analysis of spatial and temporal variability in Libya-4 with Landsat 8 and Sentinel-2 data for optimized ground target location
Autor
Año del Documento
2019
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Remote Sensing, 2019, vol. 11, n. 24, 2909
Resumen
Pseudo-Invariant Calibration Sites (PICS) have been widely used by the remote sensing community in recent decades for post-launch absolute calibration, cross-calibration, and the monitoring of radiometric stability. The Committee on Earth Observation Satellites (CEOS) has established several official PICS for these purposes. Of these, Libya-4 is the most commonly used, due to its high uniformity and stability. The site was chosen as a large-area site for medium resolution sensors, and with high-resolution sensors now common, smaller sites are being identified. This work has identified an improved area of interest (AOI) within Libya-4 by using combined Landsat 8 and Sentinel 2 data. The Optimized Ground Target (OGT) was determined by calculating the coefficient of variation along with the use of a quasi-Newton optimization algorithm combined with the Basin–Hopping global optimization technique to constrain a search area small enough to perform a final brute-force refinement. The Coefficient of Variation CV of the proposed OGT is significantly lower than that in the original CEOS area, with differences between the CV of both zones in the order of 1% in the visible near-infrared (VNIR) bands. This new AOI has the potential to improve the cross-calibration between high-resolution sensors using the PICS methodology through an OGT with more homogeneous and stable characteristics.
ISSN
2072-4292
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© 2019 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional