Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Martín, Manuel
dc.contributor.authorSánchez Esguevillas, Antonio Javier
dc.contributor.authorArribas Sánchez, Juan Ignacio 
dc.contributor.authorCarro Martínez, Belén 
dc.date.accessioned2022-07-25T08:15:39Z
dc.date.available2022-07-25T08:15:39Z
dc.date.issued2021
dc.identifier.citationIEEE Access, 2021, vol. 9, p. 153153-153170es
dc.identifier.issn2169-3536es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/54210
dc.descriptionProducción Científicaes
dc.description.abstractNetwork intrusion detection focuses on classifying network traffic as either normal or attack carrier. The classification is based on information extracted from the network flow packets. This is a complex classification problem with unbalanced datasets and noisy data. This work extends the classic radial basis function (RBF) neural network by including it as a policy network in an offline reinforcement learning algorithm. With this approach, all parameters of the radial basis functions (along with the network weights) are learned end-to-end by gradient descent without external optimization. We further explore how additional dense hidden-layers, and the number of radial basis kernels influence the results. This novel approach is applied to five prominent intrusion detection datasets (NSL-KDD, UNSW-NB15, AWID, CICIDS2017 and CICDDOS2019) achieving better performance metrics than alternative state-of-the-art models. Each dataset provides different restrictions and challenges allowing a better validation of results. Analysis of the results shows that the proposed architectures are excellent candidates for designing classifiers with the constraints imposed by network intrusion detection. We discuss the importance of dataset imbalance and how the proposed methods may be critically important for unbalanced datasets.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherInstitute of Electrical and Electronics Engineerses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationCommunication system securityes
dc.subject.classificationintrusion detectiones
dc.subject.classificationNeural networkses
dc.subject.classificationRadial basis function networkses
dc.subject.classificationNetwork intrusion detectiones
dc.titleNetwork intrusion detection based on extended RBF neural network with offline reinforcement learninges
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 IEEEes
dc.identifier.doi10.1109/ACCESS.2021.3127689es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9612220es
dc.identifier.publicationfirstpage153153es
dc.identifier.publicationlastpage153170es
dc.identifier.publicationtitleIEEE Accesses
dc.identifier.publicationvolume9es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades Proyectos de I+D+i ‘‘Retos investigación’’, (grant RTI2018-098958- B-I00)es
dc.identifier.essn2169-3536es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases
dc.subject.unesco3325 Tecnología de las Telecomunicacioneses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem