• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/54306

    Título
    Variational data generative model for intrusion detection
    Autor
    López Martín, ManuelAutoridad UVA
    Carro Martínez, BelénAutoridad UVA Orcid
    Sánchez Esguevillas, Antonio JavierAutoridad UVA Orcid
    Año del Documento
    2018
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Knowledge and Information Systems volume 60, 2019, pages 569–590
    Resumen
    A Network Intrusion Detection System is a system which detects intrusive, malicious activities or policy violations in a host or hosts network. The ability to access balanced and diversified data to train the system is very important for any detection system. Intrusion data rarely have these characteristics, since samples of network traffic are strongly biased to normal traffic, being difficult to access traffic associated with intrusion events. Therefore, it is important to have a method to synthesize intrusion data with a probabilistic and behavioral structure similar to the original one. In this work, we provide such a method. Intrusion data have continuous and categorical features, with a strongly unbalanced distribution of intrusion labels. That is the reason why we generate synthetic samples conditioned to the distribution of labels. That is, from a particular set of labels, we generate training samples associated with that set of labels, replicating the probabilistic structure of the original data that comes from those labels. We use a generative model based on a customized variational autoencoder, using the labels of the intrusion class as an additional input to the network. This modification provides an advantage, as we can readily generate new data using only the labels, without having to rely on training samples as canonical representatives for each label, which makes the generation process more reliable, less complex and faster. We show that the synthetic data are similar to the real data, and that the new synthesized data can be used to improve the performance scores of common machine learning classifiers.
    Materias Unesco
    3325 Tecnología de las Telecomunicaciones
    Palabras Clave
    Intrusion detection
    Detección de intrusos
    Redes de datos
    Data networks
    ISSN
    0219-1377
    Revisión por pares
    SI
    DOI
    10.1007/s10115-018-1306-7
    Patrocinador
    Ministerio de Economía y Competitividad (Project TIN2014-57991-C3-2-P)
    Version del Editor
    https://link.springer.com/article/10.1007/s10115-018-1306-7
    Propietario de los Derechos
    © 2018 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/54306
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Variational-data-generative-model_preprint.pdf
    Tamaño:
    1.598Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10