• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/55099

    Título
    Characterization of local activation and network dynamics from electrical brain activity: application to schizophrenia, mild cognitive impairment and dementia due to Alzheimer's disease
    Autor
    Núñez Novo, PabloAutoridad UVA
    Director o Tutor
    Poza Crespo, JesúsAutoridad UVA
    Hornero Sánchez, RobertoAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela Técnica Superior de Ingenieros de TelecomunicaciónAutoridad UVA
    Año del Documento
    2022
    Titulación
    Doctorado en Tecnologías de la Información y las Telecomunicaciones
    Resumen
    The field of neuroscience has explored the human brain and its neuronal circuits for centuries, trying to understand the underpinnings of perception, memory, in- formation transfer, and learning, among others. The term has evolved through the years to include novel approaches, such as molecular biology, medical imaging, and computational neuroscience, allowing scientists to study and characterize the nervous system in more unique ways than ever. Ironically, although the increase in available resources and techniques has brought unprecedented advances in our understanding of the brain, it has also served as a constant reminder that it still remains the biggest mystery of human anatomy. Rather than being discouraged by this fact, we should embrace it and employ these tools to gradually uncover its secrets. The present Doctoral Thesis focuses on the research, development and test- ing of new methodological frameworks for the characterization of neural activity by means of electroencephalographic (EEG) signals. In particular, the Thesis fo- cuses on new methods and measures aimed at describing the dynamic behavior of brain networks in in the following diseases that affect to the central nervous system: schizophrenia, mild cognitive impairment (MCI), and dementia due to Alzheimer’s disease (AD), by means of EEG recordings. Some aspects of disease- induced alterations of EEG activity are well documented for all three pathologies; these include: relative power shifting towards lower frequency bands or disconnec- tion of static functional connectivity. Nonetheless, neural activity in these diseases has mostly been studied from a static perspective, focusing on aspects of neural activity that remain constant across time. While this is a valid and useful approach that has helped unravel many aspects of cognition, recently there has been a shift in focus towards dynamic analyses. Even though it is reasonable to assume that cognitive tasks elicit a dynamic response in the brain, it is not as straightforward to conceive that the brain displays such changes in activation during rest. Here, we focus on exploring these properties from a granular perspective of local EEG activation to a global view of how brain networks evolve during the resting state and an auditory oddball task, in order to determine whether aberrant behavior can be found in a dynamic context.
    Materias (normalizadas)
    Cerebro - Actividad eléctrica cerebral
    Esquizofrenia
    Demencia - Alzheimer
    Actividad neuronal - Señales electroencefalográficas
    Materias Unesco
    33 Ciencias Tecnológicas
    32 Ciencias Médicas
    Departamento
    Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    DOI
    10.35376/10324/55099
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/55099
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • Tesis doctorales UVa [2367]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    TESIS-2006-220907.pdf
    Tamaño:
    485.4Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10