Mostrar el registro sencillo del ítem
dc.contributor.author | Andújar Muñoz, Francisco José | |
dc.contributor.author | Sánchez de la Rosa, Miguel | |
dc.contributor.author | Escudero Sahuquillo, Jesús | |
dc.contributor.author | Sánchez, José L. | |
dc.date.accessioned | 2022-09-22T09:51:28Z | |
dc.date.available | 2022-09-22T09:51:28Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | The Journal of Supercomputing, 2022. | es |
dc.identifier.issn | 0920-8542 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/55569 | |
dc.description | Producción Científica | es |
dc.description.abstract | Data centers are a fundamental infrastructure in the Big-Data era, where applications and services demand a high amount of data and minimum response times. The interconnection network is an essential subsystem in the data center, as it must guarantee high communication bandwidth and low latency to the communication operations of applications, otherwise becoming the system bottleneck. Simulation is widely used to model the network functionality and to evaluate its performance under specific workloads. Apart from the network modeling, it is essential to characterize the end-nodes communication pattern, which will help identify bottlenecks and flaws in the network architecture. In previous works, we proposed the VEF traces framework: a set of tools to capture communication traffic of MPI-based applications and generate traffic traces used to feed network simulator tools. In this paper, we extend the VEF traces framework with new communication workloads such as deep-learning training applications and online data-intensive workloads. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Data center networks | es |
dc.subject.classification | Modeling and simulation | es |
dc.subject.classification | Data center workloads | es |
dc.subject.classification | Performance evaluation | es |
dc.title | Extending the VEF traces framework to model data center network workloads | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2022 The Author(s) | es |
dc.identifier.doi | 10.1007/s11227-022-04692-0 | es |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s11227-022-04692-0 | es |
dc.identifier.publicationtitle | The Journal of Supercomputing | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (MCIN/AEI/10.13039/501100011033) R &D Project Grant (PID2019-109001RA-I00) | es |
dc.description.project | Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE | es |
dc.identifier.essn | 1573-0484 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 33 Ciencias Tecnológicas | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional