• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Laboratorios de Investigación
    • Laboratorio de Procesado de Imagen (LPI)
    • LPI - Artículos de Revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Laboratorios de Investigación
    • Laboratorio de Procesado de Imagen (LPI)
    • LPI - Artículos de Revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/55696

    Título
    Efficient estimation of propagator anisotropy and non‐Gaussianity in multishell diffusion MRI with micro‐structure adaptive convolution kernels and dual Fourier integral transforms
    Autor
    París Brandés, Guillem Lluis
    Pieciak, TomászAutoridad UVA
    Aja Fernández, SantiagoAutoridad UVA Orcid
    Tristán Vega, AntonioAutoridad UVA Orcid
    Año del Documento
    2022
    Editorial
    Wiley
    Descripción
    Producción Científica
    Documento Fuente
    Magnetic Resonance in Medicine, 2022.
    Résumé
    Purpose:We seek to reformulate the so-called Propagator Anisotropy (PA) andNon-Gaussianity (NG), originally conceived for the Mean Apparent Propagatordiffusion MRI (MAP-MRI), to the Micro-Structure adaptive convolution ker-nels and dual Fourier Integral Transforms (MiSFIT). These measures describerelevant normalized features of the Ensemble Average Propagator (EAP).Theory and Methods:First, the indices, which are defined as the EAP’sdissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analyticallyreformulated within the MiSFIT framework. Then a comparison between theresulting maps is drawn by means of a visual analysis, a quantitative assess-ment via numerical simulations, a test-retest study across the MICRA dataset (6subjects scanned five times) and, finally, a computational time evaluation.Results:Findings illustrate the visual similarity between the indices computedwith either technique. Evaluation against synthetic ground truth data, however,demonstrates MiSFIT’s improved accuracy. In addition, the test–retest studyreveals MiSFIT’s higher degree of reliability in most of white matter regions.Finally, the computational time evaluation shows MiSFIT’s time reduction upto two orders of magnitude.Conclusions:Despite being a direct development on the MAP-MRI represen-tation, the PA and the NG can be reliably and efficiently computed withinMiSFIT’s framework. This, together with the previous findings in the originalMiSFIT’s article, could mean the difference that definitely qualifies diffusionMRI to be incorporated into regular clinical settings.
    Materias Unesco
    33 Ciencias Tecnológicas
    Palabras Clave
    Anisotropy
    Ensemble Average Propagator (EAP)
    Fourier integral
    Multishell
    Non-Gaussianity
    Propagator
    ISSN
    0740-3194
    Revisión por pares
    SI
    DOI
    10.1002/mrm.29435
    Patrocinador
    Ministerio de Educación, Junta de Castilla y León y Fondo Social Europeo, (Grant/Award Number: OrdenEDU/1100/2017 12/12)
    Ministerio de Ciencia e Innovación, Grant/AwardNumbers: (RTI2018-094569-B-I00),(PID2021-124407NB-I00)
    Ministry of Science and Higher Education of Poland,(Grant/Award Number:692/STYP/13/2018)
    Narodowa Agencja Wymiany Akademickiej, (Grant/AwardNumber: PPN/BEK/2019/1/00421)
    Version del Editor
    https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.29435
    Propietario de los Derechos
    © 2022 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/55696
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • LPI - Artículos de Revista [9]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Efficient-estimation-propagator-anisotropy.pdf
    Tamaño:
    4.729Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10