Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/56016
Título
A systematic grey-box modeling methodology via data reconciliation and SOS constrained regression
Año del Documento
2019
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Processes, 2019, vol. 7, n. 3, 170
Zusammenfassung
Developing the so-called grey box or hybrid models of limited complexity for process systems is the cornerstone in advanced control and real-time optimization routines. These models must be based on fundamental principles and customized with sub-models obtained from process experimental data. This allows the engineer to transfer the available process knowledge into a model. However, there is still a lack of a flexible but systematic methodology for grey-box modeling which ensures certain coherence of the experimental sub-models with the process physics. This paper proposes such a methodology based in data reconciliation (DR) and polynomial constrained regression. A nonlinear optimization of limited complexity is to be solved in the DR stage, whereas the proposed constrained regression is based in sum-of-squares (SOS) convex programming. It is shown how several desirable features on the polynomial regressors can be naturally enforced in this optimization framework. The goodnesses of the proposed methodology are illustrated through: (1) an academic example and (2) an industrial evaporation plant with real experimental data.
Palabras Clave
Machine learning
Aprendizaje automático
Process modeling
Modelado de procesos
ISSN
2227-9717
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad (grant DPI2016-81002-R)
European Union’s Horizon 2020 research and innovation program. grant agreement no 723575
European Union’s Horizon 2020 research and innovation program. grant agreement no 723575
Patrocinador
info:eu-repo/grantAgreement/EC/H2020/723575
Version del Editor
Propietario de los Derechos
© 2019 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional