Mostrar el registro sencillo del ítem

dc.contributor.authorCrespo Sedano, Andrea
dc.contributor.authorÁlvarez González, Daniel
dc.contributor.authorGutiérrez Tobal, Gonzalo César
dc.contributor.authorVaquerizo Villar, Fernando 
dc.contributor.authorBarroso García, Verónica 
dc.contributor.authorAlonso Álvarez, María Luz
dc.contributor.authorTerán Santos, Joaquín
dc.contributor.authorHornero Sánchez, Roberto 
dc.contributor.authorCampo Matias, Félix del 
dc.date.accessioned2022-11-03T12:50:45Z
dc.date.available2022-11-03T12:50:45Z
dc.date.issued2017
dc.identifier.citationEntropy, 2017, vol. 19, n. 6, p. 284es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/56708
dc.descriptionProducción Científicaes
dc.description.abstractUntreated paediatric obstructive sleep apnoea syndrome (OSAS) can severely affect the development and quality of life of children. In-hospital polysomnography (PSG) is the gold standard for a definitive diagnosis though it is relatively unavailable and particularly intrusive. Nocturnal portable oximetry has emerged as a reliable technique for OSAS screening. Nevertheless, additional evidences are demanded. Our study is aimed at assessing the usefulness of multiscale entropy (MSE) to characterise oximetric recordings. We hypothesise that MSE could provide relevant information of blood oxygen saturation (SpO2) dynamics in the detection of childhood OSAS. In order to achieve this goal, a dataset composed of unattended SpO2 recordings from 50 children showing clinical suspicion of OSAS was analysed. SpO2 was parameterised by means of MSE and conventional oximetric indices. An optimum feature subset composed of five MSE-derived features and four conventional clinical indices were obtained using automated bidirectional stepwise feature selection. Logistic regression (LR) was used for classification. Our optimum LR model reached 83.5% accuracy (84.5% sensitivity and 83.0% specificity). Our results suggest that MSE provides relevant information from oximetry that is complementary to conventional approaches. Therefore, MSE may be useful to improve the diagnostic ability of unattended oximetry as a simplified screening test for childhood OSAS.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationPaediatric obstructive sleep apnoea syndromees
dc.subject.classificationUnattended oximetryes
dc.subject.classificationAutomated pattern recognitiones
dc.titleMultiscale entropy analysis of unattended oximetric recordings to assist in the screening of paediatric sleep apnoea at homees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2017 The Author(s)es
dc.identifier.doi10.3390/e19060284es
dc.relation.publisherversionhttps://www.mdpi.com/1099-4300/19/6/284es
dc.identifier.publicationfirstpage284es
dc.identifier.publicationissue6es
dc.identifier.publicationtitleEntropyes
dc.identifier.publicationvolume19es
dc.peerreviewedSIes
dc.description.projectSociedad Española de Neumología y Cirugía Torácica (SEPAR) project 153/2015es
dc.description.projectJunta de Castilla y León (Consejería de Educación) y el Fondo Europeo de Desarrollo Regional (FEDER), projects (RTC-2015-3446-1) y (TEC2014-53196-R)es
dc.description.projectMinisterio de Economía y Competitividad (MINECO) y FEDER, y el proyecto POCTEP 0378_AD_EEGWA_2_P de la Comisión Europea. L.es
dc.description.projectNational Institutes of Health (NIH) grant 1R01HL130984-01es
dc.description.projectMinisterio de Asuntos Económicos y Transformación Digital, grant IJCI-2014-22664es
dc.identifier.essn1099-4300es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases
dc.subject.unesco32 Ciencias Médicases
dc.subject.unescoMultiscale entropyes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem