• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • TRABALHO DE CONCLUSÃO DE ESTUDO
    • Trabajos Fin de Máster UVa
    • Ver item
    •   Página inicial
    • TRABALHO DE CONCLUSÃO DE ESTUDO
    • Trabajos Fin de Máster UVa
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/57427

    Título
    Análisis de retinografías basado en Deep Learning para la ayuda al diagnóstico de la retinopatía diabética
    Autor
    Muñoz Zamarro, Cristina Pinar
    Director o Tutor
    García Gadañón, MaríaAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela Técnica Superior de Ingenieros de TelecomunicaciónAutoridad UVA
    Año del Documento
    2022
    Titulación
    Máster en Ingeniería de Telecomunicación
    Resumo
    La Retinopatía Diabética (RD) es una complicación de la diabetes y es la causa más frecuente de ceguera en la población laboral activa de los paísesdesarrollados. Cuando se trata de forma precoz, la pérdida de visión se puede prevenir. Para ello, es necesario que los pacientes se sometan aexámenes oftalmológicos regulares en los que se capturan y analizan imágenes de su fondo ocular o retinografías. No obstante, la creciente incidencia dela diabetes y la falta de profesionales sanitarios dificultan la detección precoz de la RD. En este contexto, los sistemas automáticos de ayuda aldiagnóstico de la RD ofrecen beneficios en escenarios clínicos y de cribado. En este TFM se pretende contribuir a esta tarea mediante el desarrollo de unmétodo automático de procesado de retinografías basado en técnicas de deep learning. Para ello se empleará el lenguaje de programación Python y setrabajará con retinografías procedentes de un contexto clínico real. Asimismo, la alumna tendrá la oportunidad de trabajar en un grupo de investigaciónmultidisciplinar, colaborando con ingenieros y médicos especialistas en oftalmología del Hospital Clínico Universitario de Valladolid.
     
    Sight is one of the most important senses for human beings. In recent years, the number of eye diseases has increased considerably and the same trend is expected in the coming years. Some of them, such as diabetic retinopathy, glaucoma or cataracts, have become major causes of vision loss worldwide. The alterations they cause in the human eye can be seen using digital images, such as fundus images. This technique is very common and useful for the diagnosis of this type of pathologies. Early detection is key to prevent the disease from reaching its most advanced stages and to make treatment more effective. Therefore patients should undergo frequent ophthalmological examinations. However, the increasing incidence of some diseases and the shortage of specialist ophthalmologists make the manual analysis of retinal images a complex and time-consuming task. In this context, automated screening systems can be very useful to assist ophthalmologists. Despite the great effectiveness of Deep learning-based systems, their application in clinical practice is still not very evident, as a consequence of their "black box" nature. In order to solve this problem, Explainable Artificial Intelligence (XAI) has been developed, a set of techniques that try to explain the decisions made by computational models when they are used for a specific task.
    Palabras Clave
    Cribado automático
    Deep Learning
    Redes neuronales convolucionales
    Departamento
    Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/57427
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Máster UVa [7002]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    TFM-G1650.pdf
    Tamaño:
    4.574Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10