Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/57491
Título
Robust fuzzy clustering of time series based on B-splines
Autor
Año del Documento
2021
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
International Journal of Approximate Reasoning, 136, 223-246.
Resumen
Four different approaches to robust fuzzy clustering of time series are presented and compared with respect to other existent approaches. These approaches are useful to cluster time series when outlying values are found in these time series, which is often the rule in most real data applications. Arepresentation of the time series by using B-splines is considered and, later, robust fuzzy clustering
methods are applied on the B-splines fitted coefficients. Feasible algorithms for implementing these methodologies are presented. Asimulation study shows how these methods are useful to deal with contaminating time series and also switching time series due to fuzziness. A real data analysis example on financial data is also presented.
Revisión por pares
SI
Patrocinador
Spanish Ministerio de Economía y Competitividad, grant MTM2017-86061-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León and FEDER, grant VA005P17 and VA002G18.
Idioma
spa
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem