Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/57639
Título
Improved short-term load forecasting based on two-stage predictions with artificial neural networks in a microgrid environment
Autor
Año del Documento
2013
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Energies, 2013, vol. 6, n. 9, p. 4489-4507
Resumen
Short-Term Load Forecasting plays a significant role in energy generation
planning, and is specially gaining momentum in the emerging Smart Grids environment,
which usually presents highly disaggregated scenarios where detailed real-time information
is available thanks to Communications and Information Technologies, as it happens for
example in the case of microgrids. This paper presents a two stage prediction model based
on an Artificial Neural Network in order to allow Short-Term Load Forecasting of the
following day in microgrid environment, which first estimates peak and valley values of the
demand curve of the day to be forecasted. Those, together with other variables, will make the
second stage, forecast of the entire demand curve, more precise than a direct, single-stage
forecast. The whole architecture of the model will be presented and the results compared
with recent work on the same set of data, and on the same location, obtaining a Mean
Absolute Percentage Error of 1.62% against the original 2.47% of the single stage model.
Materias Unesco
33 Ciencias Tecnológicas
Palabras Clave
Artificial Neural Networks (ANN)
Short-term load forecasting
Microgrids
Multilayer perceptron
ISSN
1999-4907
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© 2013 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution 3.0 Unported