Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/58908
Título
Mutual information and meta-heuristic classifiers applied to bearing fault diagnosis in three-phase induction motors
Autor
Año del Documento
2020
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Applied Sciences, 2021, Vol. 11, Nº. 1, 314
Abstract
Three-phase induction motors are extensively used in industrial processes due to their robustness, adaptability to different operating conditions, and low operation and maintenance costs. Induction motor fault diagnosis has received special attention from industry since it can reduce process losses and ensure the reliable operation of industrial systems. Therefore, this paper presents a study on the use of meta-heuristic tools in the diagnosis of bearing failures in induction motors. The extraction of the fault characteristics is performed based on mutual information measurements between the stator current signals in the time domain. Then, the Artificial Bee Colony algorithm is used to select the relevant mutual information values and optimize the pattern classifier input data. To evaluate the classification accuracy under various levels of failure severity, the performance of two different pattern classifiers was compared: The C4.5 decision tree and the multi-layer artificial perceptron neural networks. The experimental results confirm the effectiveness of the proposed approach.
Materias (normalizadas)
Electric motors
Pattern recognition
Materias Unesco
3306 Ingeniería y Tecnología Eléctricas
3306.03 Motores Eléctricos
Palabras Clave
Bearing failure diagnosis
Artificial bee colony
ISSN
2076-3417
Revisión por pares
SI
Patrocinador
Consejo Nacional de Desarrollo Científico y Tecnológico - (processes 474290/2008-5, 473576/2011-2, 552269/2011-5, 201902/2015-0
and 405228/2016-3)
Version del Editor
Propietario de los Derechos
© 2020 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
Tamaño:
485.9Kb
Formato:
Adobe PDF
La licencia del ítem se describe como Atribución 4.0 Internacional